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A B S T R A C T

The Source Camera Identification (SCI) has achieved remarkable success. However, existing approaches
require sufficiently large training sets for high performance on accuracy and robustness. For maintaining high
performance given small training sets, we propose a semi-supervised, Mega-Trent-Diffusion (MTD) method to
generate virtual samples, such that the training sets can be expanded and unlabeled samples can be fully
utilized as well. The stability of our method is improved using ensemble learning. Our theoretical analysis and
experiments corroborate the effectiveness of our method beyond others when few-shot is given.
. Introduction

Digital images are widely used and numerous applications in market
an easily modify or process images. However, concerns on the authen-
icity of digital images arise in cases, e.g., digital images can be taken
s evidence or proof for legal issues. Thus, digital image forensics are
ttracting growing attentions in recent years [1,2].

Researches on digital image forensics are conducted mainly on
wo aspects: active forensics, which use active means to secure image
nformation, and passive forensics, which perform forensic analysis on
igital images without actively adding discriminative information in
dvance. Passive forensics are more practical in the sense that it does
ot require pre-processing. In this work, we propose a SCI method
ased on few-shot in the context of passive forensics approach.

Digital image fingerprints generated by manufacturing imperfec-
ions (within the same model) and by structural differences (cross
odels) are used as features for SCI. There are device-based, model-

ased and individual-based SCI studies and techniques been proposed
n literature [1,3][4]. The specific works are as follows.

First, Device-based SCI determines the source device type of given
mages, such as cameras, mobile phones, or computers. Lyu et al. [1]
roposed to detect device model based on orthogonal mirror filtering.
yu [2] uses mirror filter to distinguish the statistical characteristics in
he frequency domain presented in different directions and angles.

Next, Model-based SCI identifies source camera models of given
mages. Kharrazi et al. [3] use statistical features, i.e., characteristics
f color correlation, color energy ratio, and neighborhood distribution
entroid, for identification. Lyu et al. [5] use image quality features
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and Avcibas et al. [6] use wavelet features to identify camera models.
Meng et al. [7] introduce the double-popular feature and optimize
the feature selecting method, with an average accuracy rate of 90%.
There are researchers who approach from the perspective of lens light
distortion. Choi et al. [8,9] propose to describe lens distortion by
detecting linear distortion in images. In addition, the CFA interpolation
feature generated in the imaging process can be used for SCI. Farid et al.
find that the CFA interpolation operation causes correlation between
pixels, that is, a peak point of energy appears in the spectrogram. In ad-
dition, Swaminathan et al. [10,11]. propose to use a linear interpolation
model to estimate the neighborhood CFA interpolation coefficients This
method achieves an average accuracy of 85.9% for 19 camera models’
images from 9 brands.

Beyond camera device and model identifications, individual-based
SCI can be accurate to the source camera individual of a given im-
age. Based on amount and location difference of sensor defect points,
Geradts et al. [4] propose to average multiple images to detect image
defects produced by CCD modules. Yang et al. [12] applied CCD finger-
print identification technology to the source camera identification field
of online social network, which improved the trace ability application
field of digital image equipment.

In our work, we focus on identifying the camera model. The frame-
work of source forensics method is depicted in Fig. 1. Existing works,
e.g., Xu et al. [13] and Qiao et al. [14], the accuracy and effectiveness
relying on sufficiently large training sets. For example, Xu et al. [13]
propose to use LBP features to identify camera models, and the number
of training samples for each camera model is 150–300. Memon et al. [3]
vailable online 25 March 2022
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Fig. 1. The framework of source forensics method.
propose a feature set method for SCI, and select 150 images from
each model as training samples . Qiao et al. [14] use a Gaussian noise
model for SCI, and 100 samples are selected as training samples from
each camera model. Roy et al. [15] use a extraction of the discrete
cosine transform residual features for SCI, and 100 training samples
are selected from each camera model.

However, when the number of training samples decreases, the SVM
classifier or other machine learning algorithms cannot be sufficiently
trained [16], which will cause the accuracy of identification decreases
significantly. In the actual source forensics work, due to the difficulty
of obtaining samples, the number of training samples is often far from
meeting the needs of identification. Therefore, maximizing the accuracy
with insufficient training samples is an urgent issue and the major
concern of our work.

In this work, we make the following contributions:

– We propose a MTD method to generate virtual samples as labeled
samples. In addition, we introduce ensemble learning to improve
the stability of virtual samples.

– We fully utilize the unlabeled samples to improve the accuracy of
SCI by semi-supervised learning given few-shot.

– Our experiment results demonstrate the superiority of our method
given few-shot.

The rest of this paper is structured as follows. In Section 2, we
introduce the related models and definitions. In Section 3, we propose
a semi-supervised ensemble learning of virtual samples method for SCI.
In Section 4, we demonstrate our experiment setup and discuss the
results. We summarize our work in Section 5.

2. Models and definitions

2.1. Local binary pattern

Local Binary Pattern (LBP) is a local operator which describes the
image texture features. It has significant advantages, e.g., grayscale
invariance, rotation invariance, simple calculation and so on, such that
it has been widely used in many fields of computer vision [17,18]. The
uniform gray-scale invariant LBP [13] operator is denoted as 𝐿𝐵𝑃𝑃 ,𝑅
and defined as follows:

𝐿𝐵𝑃𝑃 ,𝑅 =
𝑃−1
∑

𝑝=0
𝑠
(

𝑔𝑝 − 𝑔𝑐
)

2𝑝 (1)

where 𝑃 represents the number of pixels in the neighborhood and 𝑅
represents its radius. The value of center pixel is denoted as 𝑔𝑐 , and
the values of the neighborhood pixels in a circle with a radius 𝑅 are
denoted as {𝑔𝑝 ∶ 𝑝 ∈ [𝑃 ]}. The threshold function 𝑠(𝑥) is defined as:

𝑠(𝑥) =
{

1, 𝑥 ≥ 0
0, 𝑥 < 0

(2)

Refer to Eqs. (1) and (2), if we set 𝑃 = 8, 𝑅 = 1, the difference
between the gray-level value of the center pixel and its neighborhood
2

pixels can be calculated, and there are 256 different patterns of com-
bination. Xu et al. [13] show that ‘‘uniform’’ local binary patterns are
more likely to appear than ‘‘non-uniform’’ local binary patterns. They
also show that all ‘‘non-uniform’’ local binary patterns can be integrated
into one pattern such that the dimension of features reduces from 256
to 59.

As depicted in Fig. 2, the original image is estimated by the predic-
tion function to obtain the predicted image, and the prediction-error
image is obtained by subtracting a predicted image from the original
one. We finally extract LBP features from the red and green channels
of the original image, the 1st-level diagonal wavelet subband, and
prediction-error 2D array [19]. Thus a total dimension of 59×3×2 = 354
improved LBP features are obtained.

2.2. Sample attributes correlation based mega-trent-diffusion (MTD)

Based on global fuzzification and information diffusion, Li et al. [20]
introduced the Mega-Trent-Diffusion (MTD) method to fill the blank
caused by incomplete samples. Sample attribute-correlation based MTD
method considers the correlation between samples attributes when
determining the diffusion range of the labeled samples. Li et al. consider
the correlation of sample attributes when calculating the range [21].
Taking the correlation of sample attributes into account, the center of
labeled samples is calculated by Eq. (3), which is used to calculate the
data center of the samples.

𝐶𝐿 =

{ 𝑥𝑛∕2+𝑥𝑛∕2+1
2 , 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑥(𝑛+1)∕2, 𝑛 𝑖𝑠 𝑜𝑑𝑑
(3)

Considering the mean is susceptible to outliers, Li et al. decide to
use the median of labeled samples instead of the mean to calculate
the correlation of sample attributes. As shown in Eq. (3), 𝑥 represents
the labeled samples, 𝑛 represents the number of the labeled samples.
When 𝑛 is even or odd, a different equation is used to calculate 𝐶𝐿.
The median of labeled samples differs greatly from the data population
in the case of insufficient samples, and the sample median is needed
to calculate the correlation of sample attributes. So we replace the
correlation with the trend similarity between attributes (TSA):

𝑔(ℎ)𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

1, (𝑥𝑖 − 𝐶𝐿)(𝑥𝑗 − 𝐶𝐿) > 0
0, (𝑥𝑖 − 𝐶𝐿)(𝑥𝑗 − 𝐶𝐿) = 0
−1, (𝑥𝑖 − 𝐶𝐿)(𝑥𝑗 − 𝐶𝐿) < 0

(4)

𝑆𝑖,𝑗 =
1
𝑘

𝑘
∑

ℎ=1
𝑔(ℎ)𝑖,𝑗 , 𝑖 ≠ 𝑗 (5)

where 𝑔(ℎ)𝑖,𝑗 represents degree of similarity between the two attributes’
dimensions of labeled sample ℎ. If 𝑔(ℎ)𝑖,𝑗 = 1, the similarity trend
between the two attributes’ dimensions is extremely high, that is,
both are on the same side of the center point 𝐶𝐿. 𝑆𝑖,𝑗 represents
the similarity between different attributes’ dimensions of the labeled
samples, and 𝑘 represents the number of samples in the same class.
In order to avoid using mean which is susceptible to outliers, we use
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Fig. 2. LBP feature extraction framework for one color channel.
Euclidean distance instead of sample standard deviation to measure the
dispersion as shown in Eq. (6).

𝑑𝑖 =
2
√

∑

(𝑥 − 𝐶𝐿)2∕𝑘 (6)

Incorporating the correlation of sample attributes, the bounds for
samples after diffusion are:

𝐵𝐿
𝑖 = 𝐶𝐿𝑖 − min𝑗≠𝑖{𝑑𝐿𝑖

√

−2 ln(𝜑(𝑆𝑖,𝑗 ))}

𝐵𝑈
𝑖 = 𝐶𝐿𝑖 + min𝑗≠𝑖{𝑑𝑈𝑖

√

−2 ln(𝜑(𝑆𝑖,𝑗 ))}

𝜑(𝑆𝑖,𝑗 ) =
1

1+exp(−10|𝑆𝑖,𝑗 |−0.5)

(7)

where 𝑑𝐿𝑖 and 𝑑𝑈𝑖 represent the average Euclidean distance of the
labeled samples which are less and greater than the data center value
respectively. So we get the virtual sample generation range

[

𝐵𝐿
𝑖 , 𝐵

𝑈
𝑖
]

.

2.3. Semi-supervised learning

Semi-Supervised Learning (SSL) is a method between supervised
learning and unsupervised learning [22]. Normally, unlabeled samples
are more convenient and less resource-consuming to acquire com-
paring with labeled samples. Traditional classification methods such
as support vector machine (SVM) and neural network often require
sufficient labeled samples for training to achieve higher generalization
ability [13,14]. Improving the classification performance with few-shot
is an urgent problem yet to be solved. When there is few-shot, the SSL
method is used to train the sample, then adds unlabeled samples to the
original training set (labeled samples) to improve the performance of
the classification method according to certain criteria [23].

Semi-supervised Ensemble learning is first proposed in [24], which
uses ensemble learning and the semi-supervised processing of unla-
beled samples to maximize the interval between decision boundaries.
Zhou et al. [25] confirm that semi-supervised processing and ensemble
learning can be mutually beneficial. In terms of ensemble learning,
sometimes training samples are insufficient. Here, the semi-supervised
method can supply the training samples, and increase the diversity
of the base learners in ensemble learning. In turn, ensemble learn-
ing can improve the semi-supervised learning speed and improve the
generalization ability of semi-supervised learning.

Bagging method is a classical method in ensemble learning [26]. Li
et al. [27] propose a semi-supervised bagging method based on this, as
shown in Fig. 3. The 𝑝𝑠𝑒𝑢𝑑𝑜 𝑙𝑎𝑏𝑙𝑒 is given by Eq. (8).

𝑝𝑠𝑒𝑢𝑑𝑜 𝑙𝑎𝑏𝑒𝑙 = 𝑦𝑘

𝑠.𝑡. argmax
𝑘

𝑛
∑

𝑖=1
𝛿
(

𝑦𝐴𝑖
= 𝑦𝑘

) (8)

where 𝑦𝐴𝑖
, 𝑖 ∈ [1, 𝑛] are the prediction results of different semi-

supervised learners 𝐴𝑖. The labels of the 𝑚 different classes are defined
as 𝑦𝑘, 𝑘 ∈ [1, 𝑚]. The 𝛿-function, which is used to count the number of
a specific prediction result, is shown in Eq. (9).

𝛿
(

𝑥 = 𝑥1
)

=

{

1, 𝑥 = 𝑥1 (9)
3

0, 𝑥 ≠ 𝑥1
Fig. 3. Semi-supervised bagging method.

The specific steps of semi-supervised bagging method are as follows.
(1) KNN is used as the basic classifier to train the basic classifier

based on all labeled samples. Using bagging method, unlabeled samples
are extracted from the original samples and sent to the basic classifier
for training. A total of 𝑛 groups of samples are extracted and trained to
obtain 𝑛 groups of pseudo labels;

(2) Using the semi-supervised method, all labeled samples and 𝑛
groups of pseudo labeled samples are combined into 𝑛 groups of new
training samples to train 𝑛 semi-supervised classifiers 𝐴𝑖;

(3) Finally, the remaining unlabeled samples are sent to the 𝑛 semi-
supervised classifiers for testing, and the predicted label results of the
𝑛 semi-supervised classifiers are 𝑦𝐴𝑖

, where different predicted labels
are marked as 𝑦𝑘. By using the 𝛿-function to count the times of these
different prediction labels, we can select the prediction labels with the
most statistical times as the final labels. Then we can get the final
classification result.

2.4. Ensemble learning

Ensemble learning is a form of ‘‘expanding others’’ by constructing
multiple weak classifiers and combining them into a powerful classifier
to effectively accomplish their tasks, it comprehensively determines
the learning results by combine multiple learners obtained through
training [28]. A weak classifier has a slightly better classification effect
than a random guess. Since the classification results of a single base
classifier are often not up to the ideal classification standard, the
weak classifiers obtained from the initial training are usually assembled
when the base classifier is used [29]. By learning and complementing
each other, the classifiers can ultimately improve the accuracy of the
classification and achieve the desired experimental results, which is
shown in Fig. 4.
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Fig. 4. Ensemble learning model.

According to current results, ensemble learning methods can be
ivided into ‘‘Homogeneous’’ and ‘‘Heterogeneous’’ ensemble learning.

‘Homogeneous’’ ensemble learning constructs the base learner with
earning algorithms of only one type. For example, in our method all
he base learners utilize the support vector machine (SVM). In addition,
he learning algorithms for regression, such as decision trees, etc., can
lso be used in ‘‘Homogeneous’’ ensemble learning. ‘‘Heterogeneous’’
nsemble learning can be considered as a broad definition. In order
o achieve the same goal, various learning algorithms can be used to
onstruct the base learner. There are many strategies for ensemble clas-
ifiers, such as averaging, voting, and weighted average method [30].
or the prediction of classification problems, the voting method is
imple and effective. In addition, the result of our base classifier is
he class of the image. So we choose the voting method in our work.
he voting method is also ‘‘Majority rule’’, which means if there are
classifiers, the class obtained by a large number of classifiers is the

inal class of the image.

. Proposed method

We know that semi-supervised ensemble learning can solve the
roblem of inaccurate classification with few-shot. By filtering the
ppropriate unlabeled samples into existing training sets under certain
onditions, one can increase the number of training samples and reduce
he number of samples required for ensemble learning. We propose
virtual sample generation method based on semi-supervised ensem-

le learning to improve the accuracy of SCI with few-shot, which is
epicted in Fig. 5, and we named it MTD-SEM.

We extend the training set by generating virtual samples based on
TD method. The upper and lower limits of the specific boundary for

irtual samples generation are determined by the distribution of the ex-
sting training samples. Similarly, after determining the range [𝐵𝐿

𝑖 , 𝐵
𝑈
𝑖 ],

the virtual samples’ values are generated based on the uniform distribu-
tion within [𝐵𝐿

𝑖 , 𝐵
𝑈
𝑖 ]. Considering the randomness of generating virtual

amples in the range [𝐵𝐿
𝑖 , 𝐵

𝑈
𝑖 ] according to uniform distribution is too

trong, so we use the Triangular Membership Function to judge the
ossibility of the generated virtual samples [31].

In Fig. 6, 𝑀𝐹 represents the distribution of samples, and 𝑡𝑝 is the
irtual sample values randomly generated in [𝐵𝐿

𝑖 , 𝐵
𝑈
𝑖 ] according to uni-

orm distribution. Based on the generated 𝑡𝑝 value, the corresponding
𝐹 value is calculated according to Eq. (10), and the 𝑀𝐹 value is used

s the possibility of its occurrence. At the same time, random number 𝑟
s generated on [0,1] according to uniform distribution. If 𝑟 < 𝑀𝐹 , the
enerated virtual sample 𝑡𝑝 is more likely to exist and can be retained as
suitable virtual sample. Repeat the above process until enough virtual

amples are generated.

𝐹 (𝑡𝑝) =

⎧

⎪

⎨

⎪

⎩

𝑡𝑝−𝐿
𝐶𝐿−𝐿 , 𝐿 ≤ 𝑡𝑝 ≤ 𝐶𝐿

0, 𝑡𝑝 < 𝐿, 𝑡𝑝 > 𝑈
𝑈−𝑡𝑝
𝑈−𝐶𝐿 , 𝐶𝐿 < 𝑡𝑝 ≤ 𝑈

(10)

𝐿 𝑈
4

where 𝐿 is 𝐵𝑖 , 𝑈 is 𝐵𝑖 in Eq. (10).
Besides, our method is based on the semi-supervised Bagging
method, which can be divided into two phases: ensemble learning
and semi-supervised ensemble learning. The flow chart of the method
is shown in Figs. 3 and 4. First, we extract each class samples’ LBP
features, and the training samples are randomly extracted from each
class by 5, 10, 15, 20 and 25 samples. Then, based on the training
samples, 5 sets of virtual samples are generated using sample attributes
correlation based MTD method. The virtual samples are randomly
generated in the range based on the trend diffusion theory, and have
strong randomness, which leads that the classification results of the
base classifier is unstable. Therefore, we generate 5 sets of virtual
samples based MTD method to improve the difference between the base
classifiers and improve their generalization ability. Then these sets of
virtual samples are added to the original sample set as the new 5 sets of
training sets. Based on the new training sets, 5 base classifiers (SVMs)
can be trained. The ensemble classifier 1 is obtained by integrating 5
base classifiers using a relative majority voting method.

The semi-supervised method can select a certain number of un-
labeled samples as training samples. In this paper, we use posterior
probability as the standard for selecting samples. Each unlabeled sam-
ple gets its posterior probability belonging to each class by ensemble
classifier 1. The greater the posterior probability, the greater the proba-
bility that the sample belongs to this class. So we arranged the samples’
posterior probabilities of each class in descending order, and the first
few unlabeled samples with the highest posterior probability in each
class are retained. The corresponding class is the pseudo label of the
unlabeled sample.

The semi-supervised ensemble learning method is different from
the semi-supervised method in that the selected unlabeled samples are
not directly added to the training classifier in the original training
sample, but the selected unlabeled samples are used as the new training
samples first, and generate new virtual samples based MTD method.
Considering the instability of the virtual samples generated by the MTD
method, similarly, the new training samples are added to the original
training set together with the new virtual samples to obtain a new
training samples. Finally, the final SCI classifier is obtained again based
ensemble learning, named as the ensemble classifier 2.

4. Experiments

In this section, the SCI experiment based on the semi-supervised en-
semble learning of virtual samples is carried out on the image database,
which is commonly used in forensics. The experimental results of this
method are compared with the SCI results based on virtual sample
generation method and virtual sample ensemble learning method, etc.

4.1. Experimental setup

In order to ensure the reliability of the experimental results, the
well-known ‘‘Dresden Image Database’’ [32] is used in this paper. The
images taken by 16 models are arbitrarily selected as experimental
samples. As shown in Table 1, each camera model has 180 image
samples and the resolution of each camera is given. Blocks of size
512 × 512 are intercepted from the center of each image. Features
used in our experiments are LBP features. A total of 180 samples per
camera, of which the training samples range from 5 to 25, and the
remaining samples that exclude the training samples are selected as the
test sample. The experiments are repeated 20 times and the results are
averaged to remove the effect of randomness.

4.2. Results and discussion

In the first part of the experiment, we need to assign pseudo labels
to unlabeled samples in the semi-supervised process. Therefore, for
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Fig. 5. Training flow chart of source camera identification based on virtual sample semi-supervised ensemble learning.
Fig. 6. The 𝑀𝐹 value of virtual sample (𝑡𝑝).

Table 1
Dataset in experiments.

Camera module Abbr. Size

Canon_Ixus70 C1 3072 × 2304
Casio_EX-Z150 C2 3264 × 2448
FujiFilm_FinePixJ50 F1 3264 × 2448
Kodak_M1063 K1 3664 × 2748
Nikon_CoolPixS710 N1 4352 × 3264
Nikon_D70 N2 3008 × 2000
Nikon_D200 N3 3872 × 2592
Olympus_mju_1050SW O1 3648 × 2736
Panasonic_DMC-FZ50 P1 3648 × 2736
Praktica_DCZ5.9 P2 2560 × 1920
Rollei_RCP-7325XS R1 3072 × 2304
Samsung_L74wide S1 3072 × 2304
Samsung_NV15 S2 3648 × 2736
Sony_DSC-H50 SD1 3456 × 2592
Sony_DSC-T77 SD2 3648 × 2736
Sony_DSC-W170 SD3 3648 × 2736

Table 2
The five highest pseudo label accuracy of unlabeled samples.

Number 5 10 15 20 25

Accuracy 90.00% 94.03% 96.11% 96.25% 97.92%

each class of samples, we selected five unlabeled samples with the
highest posterior probability of assigning pseudo labels as new training
samples. Finally, The distribution accuracy of pseudo labels is shown
in Table 2.

The results show that as the number of training samples increases,
the accuracy of the judgment gradually increases. When the number
5

Table 3
Average accuracy of source camera identification.

Algorithm 5 10 15 20 25

LBP 45.64% 71.24% 78.97% 83.29% 85.45%
MTD 49.74% 71.93% 80.15% 84.32% 86.94%
MTD-EM 50.10% 71.33% 80.00% 84.07% 87.04%
SEMI 52.24% 72.22% 80.45% 84.35% 86.99%
MTD-SEM 61.07% 74.11% 81.22% 84.73% 87.52%

of samples is 5, 10, 15, 20, and 25, respectively, the corresponding
accuracy is 90.00%, 94.03%, 96.11%, 96.25%, 97.92%, and the lowest
judgment accuracy is also 90.00%, which shows that the unlabeled
samples we screened are suitable.

Table 3 shows the accuracy of image source identification in differ-
ent situations. Without the virtual samples (LBP), the accuracy of SCI
is 45.64%, 71.24%, 78.97%, 83.29%, and 85.45%, which is achieved
based on the image source identification model trained with the raw
dataset of 5, 10, 15, 20, and 25 training samples respectively. In order
to make full use of the labeled sample information, we introduce virtual
samples generated by MTD method (MTD). The accuracy of SCI slightly
improves, and when the number of samples is 5, the improvement of
accuracy is maximized, which is 4.10%. Due to the instability of the
virtual samples generated by the MTD method, we subsequently apply
the ensemble learning method (MTD-EM) proposed in this paper [33]
and the accuracy of SCI is slightly improved. The final experimental
results also prove that our results are better than their methods in the
same experimental configuration.

In order to verify the effectiveness of semi-supervised method, we
conduct a separate set of semi-supervised experiments (SEMI). When
the number of samples is 5, 10, the accuracy is 52.24% and 72.22%,
which improves significantly. In the end, we combine virtual samples
based on ensemble learning with semi-supervised (MTD-SEM). When
the number of sample ranges from 5 to 25, the classification accuracy
of the MTD-SEM method is the highest, and the accuracy far surpasses
the baseline of LBP method, which is 15.43%, 2.87%, 2.25%, 1.44%,
2.07%.

When the number of labeled samples is 25, the average confusion
matrix of MTD-SEM method obtained by SVM classification over 20
iterations is shown in Table 4. The asterisks in the table represent the
classification probability below 0.01%. As demonstrated, our MTD-SEM
method achieves a highest accuracy of 94.98% for SD2 camera, and we
find that nearly half accuracy of SCI is up to 92.00%. Except for the
SD1 camera and the SD3 camera, most other cameras accuracy of SCI
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Table 4
Average confusion matrix obtained by SVM classification over 20 iterations.

Average TP=87.52% Predicted

C1 C2 F1 K1 N1 N2 N3 O1 P1 P2 R1 S1 S2 SD1 SD2 SD3

Actual

C1 91.25% 2.44% * * 1.15% 0.50% * 1.36% 0.22% 0.14% 0.14% 2.51% 0.29% * * *
C2 1.51% 91.18% 0.07% 0.07% 0.72% * * 0.29% 0.57% 0.57% * 3.73% * 0.43% 0.22% 0.65%
F1 0.22% * 91.04% 0.14% 0.07% 0.29% * 0.29% 0.93% 3.66% 1.51% 0.36% 1.36% 0.07% * 0.07%
K1 * 0.22% 0.22% 89.18% 0.57% 0.57% 4.73% 0.29% 0.50% 0.93% 0.43% 0.07% 0.65% 1.15% 0.07% 0.43%
N1 1.15% 4.09% * * 89.68% 1.00% 0.07% 0.07% 0.22% 1.72% 0.14% 1.86% * * * *
N2 0.22% * 0.65% 0.22% 0.50% 87.46% 5.02% 0.29% * 0.57% 0.57% 2.80% 1.72% * * *
N3 0.29% * 0.22% 2.94% 0.07% 1.72% 90.47% * * * 0.14% 0.86% * 1.08% 1.51% 0.72%
O1 1.36% 0.14% 0.14% 0.14% 0.79% 0.36% 0.43% 91.04% 0.50% 0.22% * 4.16% * 0.36% 0.36% *
P1 0.07% 1.15% 0.50% 0.29% * 0.07% 1.22% 0.36% 93.55% 0.43% * 1.00% 0.79% 0.07% 0.07% 0.43%
P2 0.29% 1.22% 1.36% 0.29% 0.14% 2.29% * * 0.22% 90.25% 1.15% 0.29% 2.29% 0.22% * *
R1 * 0.14% 2.94% 0.07% 0.07% 1.94% * * * 0.86% 91.33% 0.50% 1.51% 0.65% * *
S1 0.72% 1.51% 0.79% 0.36% 0.29% 0.57% 0.22% 1.29% 0.65% 0.14% 0.50% 92.47% 0.43% 0.07% * *
S2 * * 0.65% * * 0.50% * * * 2.65% 2.51% 0.22% 92.62% 0.79% * 0.07%
SD1 0.22% * 0.36% * * * 0.29% * 0.43% 0.14% 0.43% 0.22% 0.43% 62.80% 2.01% 32.69%
SD2 * * 0.29% * * * 0.14% * 0.07% 0.07% 0.22% 0.36% 0.07% 3.08% 94.98% 0.72%
SD3 * * 0.22% * * * 0.29% * 0.43% * 0.14% * 0.14% 36.99% 0.79% 61.00%
is higher than 90.00%. The SD1 camera and the SD3 camera accuracy
of SCI is 62.80% and 61.00%. These two cameras are confused with
each other when classifying. The reason is the two models adopt similar
image post-processing algorithm.

5. Conclusion

In this paper, we propose to combine a semi-supervised virtual
sample generation method with the ensemble learning to identify
image source camera given insufficient labeled samples. We use Mega-
Trend-Diffusion (MTD) method to generate virtual sample, and apply
ensemble learning to improve the instability. Through semi-supervised
method we can make full use of unlabeled samples. Our experiments
compare LBP method, MTD method, MTD-EM method and SEMI
method. The results demonstrate that our proposed method MTD-SEM
is superior to the existing methods given insufficient labeled samples.
In future, we will further consider improving classification accuracy by
introducing new features.
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