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a b s t r a c t 

In recent years, various steganalysis algorithms have been proposed and achieved satisfactory perfor- 

mance. However, these conventional methods are not effective for mismatched steganalysis. In real world, 

there are millions of images captured by different cameras and users transmitted on the Internet every 

day. The steganalysis on Internet images will encounter steganographic algorithm mismatch (SAM) and 

cover source mismatch (CSM). Therefore, the steganalysis on the Internet is essentially to solve the mis- 

match problem. This paper proposes a method to solve the mismatched steganalysis on the Internet im- 

ages by domain adaptation classifier. It makes the distribution between training and testing sets more 

similar to obtain better detection performance. We integrate joint distribution adaptation and geometric 

structure as regularization terms to a standard supervised classifier. Specifically, joint distribution adap- 

tation contains marginal and conditional distributions. And considering the characteristics of steganalysis 

on the Internet images, we add the conditional regularization in the geometric structure to the existing 

algorithms. Experimental results (include SAM and CSM) on Internet images show that our method has a 

better performance than state-of-the-art methods. 

© 2019 Published by Elsevier B.V. 
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. Introduction 

Steganography is a technology that embeds secret messages

n digital media and transmits it in open channels [1,2] . No one

nows the existence of secret information except the sender and

he receiver. In contrast to steganography, steganalysis aims to de-

ect the presence of secret messages in digital media [3,4] . These

wo technologies are moving forward together. Conventional ste-

analysis methods include two steps: extracting features and train-

ng classifier. In recent years, many steganalysis features have

chieved good performance in laboratory environments, such as

EV274 [5] , DCTR [6] , JRM [7] . These recently proposed steganal-

sis features trend to become more complex and have higher di-

ensions. In order to obtain lower computational complexity with

he high-dimensional features, the applications of ensemble classi-

er [8] are becoming more and more popular. However, the good

erformances are obtained on matched steganalysis under labora-

ory conditions. 

The rapid development of Internet has greatly enriched peo-

le’s material and spiritual life, and billions of people have per-

onal computers or smart phones. Images are widely used because
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hey contain large amounts of information. In our lives, everyone

an upload and download images at anytime and anywhere by

sing their smart devices. In addition, there are millions of im-

ges are posted on the Internet by different users every day, and

heir sizes, imaging equipments, qualities, contents are quite differ-

nt. For instance, social media networks flickr and instagram have

illions of users sharing images. Furthermore, the development

f personal cameras, cell phones and image modification software

s convenient for people’s daily life, but criminals can also use

hese tools to transfer secret messages more simply. In addition,

any news media have reported that criminals employ steganog-

aphy in many terrorist attacks and crimes [9] , such as Septem-

er 11 attacks, islamic terrorist organization. Therefore, steganaly-

is on the Internet images is essential. However, when we move

onventional steganalysis algorithms into real-world, the different

istributions of training and testing sets can cause significant per-

ormance degradation [10] . We call the phenomenon mismatch

11–16] . 

Specifically, the problem of mismatched steganalysis is caused

y the differences between the training and testing sets. In gen-

ral, the differences occur mainly in the two processes of generat-

ng cover and stego images [11] . Cover source of images includes

he imaging equipment, size, quality factor, compression history,

pload or download record and so on. The Internet images contain

ll the cover sources mentioned above. Similarly, in the process

https://doi.org/10.1016/j.neucom.2019.04.025
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Fig. 1. Expanding diversity of training set. There are many types of distribution in training set, and always one can match testing set. 

Fig. 2. The different distributions of original features in training and testing sets can be similar by domain adaptation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X  

c

 

n  

c  

h  

c  

t  

i  

d  

t  

[  

i  

y  

a  

s

 

s  

k  

F  

c  

s  

u  
of generating stego images, steganographic algorithm and payload

size also lead to mismatch. The main purpose of this paper is to

propose a method for tackling SAM (steganographic algorithm mis-

match) and CSM (cover source mismatch) on the Internet images. 

Recently, the literatures have shown an increasing interest in

the mismatched steganalysis. The existing mismatch steganalysis

methods can be roughly divided into two categories: supervised

and unsupervised. The main issue of supervised method is how

to make the classification model obtained in training set performs

well in a different testing set. Specifically, there are two strategies

for supervised methods. One is expanding the diversity [11,12,17] of

training set to make it applicable to more testing sets, the other-

which is known as domain adaptation [13–15] reduces difference

of distributions between training and testing sets. The existing un-

supervised methods are outlier detection [16,18,19] , which treat the

stego images and steganographers as rare outliers. 

(1) Expanding diversity: Fig. 1 . indicates that it matches the

testing set by expending the diversity of training set. Ker et al.

[17] proposed a mishmash method for mitigating the model mis-

match mess. Fridrich et al. [11] proposed two algorithms for cover

source mismatch, Mixture and Closest. Mixture extends image

sources of training set, and Closest chooses the training set from

many pre-training sets, which is the most similar to the testing set.
u et al. [12] proposed large representative training set for intra-

lass variation. 

(2) Domain adaptation: Transfer learning is an effective tech-

ology that uses rich labeled data in source domain to obtain a

lassifier for the target domain where labeled data is sparse. It

as been widely used in image classification, object recognition,

ross-domain recommendation and etc. [20–26] . It is a coincidence

hat the application scenario of cross domain transfer learning

s similar to mismatched steganalysis. Kong et al. [13–15] intro-

uced transfer learning to mismatch steganalysis by sharing fea-

ure representation between training and testing sets. Daniel et al.

27] sought a latent space by using manifold alignment. As shown

n the Fig. 2 ., domain adaptation transforms the original steganal-

sis feature, such as PEV-274, to a new feature representation,

s a result the distributions of training and testing sets become

imilar. 

(3) Outlier detection: This strategy is accompanied by moving

teganalysis into real-world, because there are few people who

now how to use the steganography technology on the Internet.

ig. 3 . shows that stego image and steganographer deviate from

over images and normal users. Ker et al. [18] proposed a new

teganalysis paradigm that steganographer (social media network

ser) is the outlier. They adopted local outlier factor (LOF) [28] to
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Fig. 3. Outlier detection is an unsupervised strategy, where the stego image and steganographer are treated as outliers, and mismatch is non-existent. 
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valuate the degree of actors deviation from the majority. The

ser who is the farthest from the majority is considered as the

teganographer. Li et al. [19] also used unsupervised clustering en-

embles to find steganographer. The advantage of this strategy is

hat it is completely unaffected by mismatch because it does not

equire training set. 

All of these methods alleviate the influence of mismatched ste-

analysis on detection performance degradation to some extent.

owever, these strategies still have limitations. First, we cannot in-

efinitely extend the diversity of training set to make it contain

ll types of the testing sets. Moreover unsupervised methods can

chieve great performance only when the steganographic embed-

ing rate is high. It is inevitable that cover images may also deviate

rom the majority. Therefore the method based on outlier detection

s unstable. 

Our work belongs to domain adaptation, and we propose a

ethod to obtain an adaptive classifier that includes joint distri-

ution adaptation and graph Laplacian regularization. Joint distri-

ution adaptation contains marginal distribution and conditional

istribution. We also extend the knowledge of marginal and con-

itional distribution into graph regularization. In addition, we con-

truct the conditional distribution based graph regularization with

he testing label obtained by the adaptive classifier to continuously

oost the detection accuracy rate. 

The remainder of the paper is organized as follows. We re-

iew the related work and summarize contributions of our work in

ection 2 . In Section 3 , we propose a joint distribution based adap-

ive classifier on Internet images steganalysis. We conduct experi-

ents on real-world datasets and compare with previous methods

n Section 4 . Finally, we conclude this paper in Section 5 . 

. Related work 

In this section, we discuss the existing domain adaptation

ethods and their applications in mismatched steganalysis in de-

ail. Conventional steganalysis consists of extracting features and

lassifiers. We consider the main reason for the existence of mis-

atched steganalysis is that there is a huge difference between the

istributions of training and testing features. In order to solve this

roblem, we can extract better features or learn better classifier.

he two parts of steganalysis exactly correspond to subspace trans-

er learning and domain adaptive classifier. Specifically, subspace

ransfer learning makes a new feature representation, and the bet-

er classification results can be obtained in the new feature space.

n addition, domain adaptive classifier improves detection accuracy

y constructing an adaptive classifier. 

Transfer learning aims to learn an effective classifier by

ufficient labeled source data for unlabeled target data. It is an
mportant issue how to reduce the difference of distributions be-

ween source and target data and preserve the properties of orig-

nal data simultaneously [29] . According to Pan and Yang [30] , we

oughly separate existing methods into two categories: subspace

ransfer learning and domain adaptive classifier. 

(1) Subspace transfer learning: These methods sought a latent

haring subspace to reduce the distribution difference between

oth domains. Some methods introduced Principal Component

nalysis (PCA) to reconstruct feature representation of original

ata. In order to reduce the distribution difference, the first thing

s to measure the distance of distributions in different domains

roperly, e.g., Maximum Mean Discrepancy [20,29,31] and Bregman

ivergence [32] . However, it is not enough to obtain an effective

eature representation. Therefore, the great performance of sub-

pace also needs to preserve the important properties of original

ata. 

(2) Domain adaptive classifier: These methods aim to construct

 domain adaptive classifier [21–25] by integrating the domain

daptation principles as regularization terms directly. Cao et al.

2] proposed to implement multiple kernel learning for domain

daptation. Similar to subspace transfer learning, the principles of

omain adaptation also include reducing the distribution differ-

nce and preserving latent properties and so on. 

Most of the existing transfer learning approaches in steganal-

sis belong to subspace transfer learning. Feng et al. [15] aligned

ean and variance to reduce statistical differences of features.

eng et al. [13] considered preserving properties of training set and

educing distribution difference. Long et al. [21] proposed a general

ramework ARTL (Adaptation Regularization Transfer Learning) that

earns an adaptive classifier by simultaneously minimizing struc-

ural risk, joint distribution adaptation and geometric structures of

arginal distribution. 

Our work belongs to domain adaptive classifier. Specifically,

e improved the method ARTL (Adaptation Regularization Trans-

er Learning) by considering the conditional distribution in man-

fold consistency learning. The contributions of this paper are as

ollows: 

(a) We aim to steganalysis for Internet images [10,18,19,33] ,

hich is more practical and necessary. 

(b) Similar to ARTL [21] , we learn an adaptive classifier to detect

he stegos. The joint distribution adaptation includes marginal and

onditional distribution. But the ARTL only preserves the marginal

eometric structure in graph Laplacian, so we add the conditional

istribution in graph Laplacian regularization. 

(c) Experimental results include steganographic algorithms

ismatch and cover source mismatch on Internet images. Our

roposed method has better performance than state-of-the-art

ethods. 
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Table 1 

Notations and descriptions used in this paper. 

Notation Description Notation Description 

n s , n t #samples of X s , X t X Data matrix 

d #feature dimension y Label vector 

C #classes K Kernel matrix 

λ Shrinkage parameter α Classifier parameters 

β MMD parameter M MMD matrix 

γ Graph parameter L Graph Laplacian matrix 
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3. Proposed method 

In this section, we will introduce Joint Distribution based Adap-

tive Classifier (JDAC) in detail. Firstly, we define the problem and

summarize the frequently used notation in Table 1 . Given the

training set X s = [ x s 1 , x s 2 , . . . , x s n s ] 
T ∈ R 

n s ×d , which is composed

of n s samples and d -dimensional features. y s ∈ R n s ×1 is the la-

bel vector of training set and y s i ∈ { −1 , 1 } represent the cover

and stego respectively. Similarly, the testing feature set is X t =
[ x t 1 , x t 2 , . . . , x t n s ] 

T ∈ R 

n t ×d and the testing label vector y t ∈ R n t ×1 is

unknown. The task of this paper is to use sufficient labeled training

data to learn an effective adaptive classifier for unlabeled testing

data. 

JDAC integrates joint distribution adaptation and geometric

structures as regularization terms to a standard classifier. Similar to

many literatures, Maximum Mean Discrepancy (MMD) [31] is used

to measure the distance between cross domain distributions. The

marginal and conditional distribution adaptations are constructed

by utilizing the true labels of training data and the pseudo la-

bels of testing data effectively. In addition, we approve the man-

ifold assumption in cross domain task: if two points x 1 , x 2 are

close in the intrinsic geometric structure of marginal distributions

P s and P t , then the conditional distributions P ( y | x 1 .) and P ( y | x 2 .)

will be also similar. Furthermore, we develop the initial manifold

assumption by considering the geometric structure distance of two

points in conditional distribution. In other words, we reasonably

use the pseudo labels of testing data when constructing the condi-

tional graph Laplacian regularization. Therefore, the objective func-

tion contains three parts: Prediction Losses, Joint Distribution Adap-

tation and Graph Laplacian Regularization . It is worth noting that

graph Laplacian regularization is based on joint distribution. 

3.1. Prediction losses 

The goal is to obtain an adaptive classifier f ( x ) that can ef-

fectively classify testing data by using the labeled training data.

Therefore, we firstly introduce the standard classifier prediction

function 

f ( x ) = αT φ( x ) (1)

where α is n s × 1 classifier parameters vector, and φ( ·) is kernel-

induced mapping feature to Reproducing Kernel Hilbert Space

(RKHS). According to structural risk minimization [23,34] , the

squared loss function is adopted. Then, the prediction losses func-

tion in training data can be represented as: 

n s ∑ 

i =1 

( f ( x s i ) − y s i ) 
2 + λ‖ 

f ‖ 

2 
H 

(2)

where ‖ ·‖ 2 H 

is the � 2 norm in RKHS, and λ is shrinkage parame-

ter. Then the classifier function (1) is taken into formula (2) . And

considering that the following formulas involve both the training

and testing data, for expressing conveniently, we extend the source

data to entire data in Eq. (2) by introducing coefficient matrix

E . Specifically, E ∈ R n × n is a diagonal matrix that ignores the un-

known testing labels with the element E = 1 when x ∈ X s , and
ii i 
 ii = 0 otherwise. So (2) can be rewritten as: 

n ∑ 

i =1 

( f ( x i ) − y i ) 
2 
E ii + λ‖ 

f ‖ 

2 
H 

= 

∥∥(
y T − αT K 

)
E 

∥∥2 

F 
+ λtr 

(
αT K α

)
(3)

here n = n s + n t is number of training and testing samples, and

abel vector y = [ y 1 , y 2 , . . . , y n s + n t ] 
T ∈ R n ×1 includes labels of the

ntire data. It does not matter what the label of testing data is

n (3) , because the coefficient matrix can filter it. We map fea-

ures matrix X = [ X s , X t ] 
T into RKHS and construct kernel matrix

 = �(X )�(X ) T ∈ R n ×n . 

Noting that JDAC is constructed only as a standard classifier

n labeled training data so far. In order to make f ( x ) more adap-

ive and effective on testing data, joint distribution adaptation and

raph Laplacian regularization will be introduced. 

.2. Joint distribution adaptation 

In the previous subsection, a standard classifier is obtained, but

t does not necessarily achieve great performance on testing data.

o the next step is to integrate the knowledge of transfer learning

o previous predicted function. According to Long et al. [20] , we

dopt joint distribution adaptation that contains marginal distribu-

ion and conditional distribution. 

Marginal distribution adaptation : It is difficult to directly de-

cribe the marginal distribution of two data sets. Similar to

14,20,29] , we adopt a basic assumption of Maximum Mean Dis-

repancy (MMD): if the mean values of two distributions with suf-

cient samples are equal, the two distributions are similar. Then

he distance between training and testing data is measured as: 

 M D 0 
2 = 

∥∥∥∥∥ 1 

n s 

n s ∑ 

i =1 

φ( x i ) −
1 

n t 

n t ∑ 

j=1 

φ
(
x j 

)∥∥∥∥∥
2 

H 

(4)

here φ( ·) is kernel-induce mapping feature to RKHS and ‖ · ‖ 2 H 

s the � 2 norm in RKHS. In order to combine prediction function f

ith marginal distribution adaptation, the Eq. (1) is incorporated

nto formula (4) and obtain predicted MMD 0 : 

 M M D 0 
2 = 

∥∥∥∥∥ 1 

n s 

n s ∑ 

i =1 

f ( x i ) −
1 

n t 

n t ∑ 

j=1 

f 
(
x j 

)∥∥∥∥∥
2 

H 

= tr 
(
αT K M 0 K α

)
(5)

here tr ( ·) is trace and K = �(X )�(X ) T is kernel matrix. M 0 is

oefficient matrix that can be computed as: 

( M 0 ) i j = 

⎧ ⎨ 

⎩ 

1 
n s n s 

, x i , x j ∈ X s 
1 

n t n t 
, x i , x j ∈ X t 

−1 
n s n t 

, otherwise, 

(6)

inimize Eq. (5) to reduce marginal distributions differences be-

ween training and testing sets. 

Conditional distribution adaptation : The conditional distribution

annot be directly represented, since there are no labeled data in

esting set. In this paper, we adopt a standard classifier to obtain

seudo labels of testing samples. Then conditional distributions of

ifference sets are evaluated with true training labels and pseudo

esting labels. Similar to MMD 0 , the class-conditional distribution

s defined as 

 M D c 
2 = 

∥∥∥∥∥ 1 

n 

c 
s 

n c s ∑ 

i =1 

φ( x i ) −
1 

n 

c 
t 

n c t ∑ 

j=1 

φ
(
x j 

)∥∥∥∥∥
2 

H 

(7)

here n c s and n c t are the number of training and testing samples

elonging to class c . Since steganalysis is binary classification prob-

ems, c ∈ { −1 , 1 } respectively represent cover and stego images.
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ollowing to Eq. (5) , the classifier is incorporated into (7) and the

redicted conditional distribution MMD can be computed as: 

 M M D c 
2 = 

∥∥∥∥∥ 1 

n 

c 
s 

n c 
s ∑ 

i =1 

f ( x i ) −
1 

n 

c 
t 

n c 
t ∑ 

j=1 

f 
(
x j 

)∥∥∥∥∥
2 

H 

= tr 
(
αT K M c K α

)
(8)

here M c is coefficient matrix and can be represented as: 

( M c ) i j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 
n c s ·n c s , x i , x j ∈ X 

c 
s 

1 
n c t ·n c t , x i , x j ∈ X 

c 
t 

−1 
n c s ·n c t , 

{
x i ∈ X 

c 
s , x j ∈ X 

c 
t 

x i ∈ X 

c 
t 
, x j ∈ X 

c 
s 

0 , otherwise, 

(9) 

he conditional distributions difference of training and testing sets

an be reduced by minimizing Eq. (8) . 

This paper combines Eqs. (5) and (8) to reduce difference in

arginal and conditional distributions between training and test-

ng set. So joint distribution adaptation can be computed as 

 r 
(
αT K M 0 K α

)
+ t r 

(
αT K M c K α

)
= t r 

(
αT KMK α

)
(10)

here M = M 0 + M c is joint distributions matrix, and

 = �(X )�(X ) T is kernel matrix. 

.3. Graph Laplacian regularization 

As a supplement to joint distribution adaptation, our work in-

orporate graph Laplacian regularization of joint distributions in

oth domains to predict loss function. The geometric structures

f distributions imply label information of testing data. According

o manifold assumption, the geometric structures of marginal dis-

ributions P s , P t between two points x 1 , x 2 can approximately re-

ect conditional distributions P ( y | x 1 .) and P ( y | x 2 .). One of our im-

ortant contributions in this paper is that we develop manifold

ssumption from marginal distribution to joint distribution. The

raph Laplacian regularization contains marginal and conditional

eometric structures. 

Similar to the previous subsection, since the testing set has

on-labeled samples, marginal graph Laplacian regularization is

omputed as: 

 

f ‖ 

2 
G 0 

�= tr 
(
αT K L 0 K α

)
(11) 

here G 0 is affinity graph with marginal distribution in training

nd testing sets, and L 0 is the normalized graph Laplacian matrix.

 0 is graph affinity matrix [23] which can be computed as: 

( W 0 ) i j = 

{ 

e −
‖ 

x i −x j ‖ 

2 

σ2 , x i , x j ∈ X s or x i , x j ∈ X t 

0 , otherwise, 

(12) 

here σ is bandwidth parameter, and the elements are calculated

y Gaussian function. 

Then the graph Laplacian regularization of conditional distribu-

ion is designed by utilizing the pseudo labels of testing data. And

he pseudo testing labels can be obtained by a standard classifier

n training data. The conditional graph Laplacian regularization is

omputed as: 

 

f ‖ 

2 
G c 

�= tr 
(
αT K L c K α

)
(13) 

here c ∈ { −1 , 1 } respectively represent cover and stego images.

 c is conditional affinity graph and it associates with information

f labels in both domains. Similar to Eq. (12) , the conditional graph
ffinity matrix can be computed as: 

( W c ) i j = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

e −
‖ 

x i −x j ‖ 

2 

σ2 , 

⎧ ⎪ ⎨ 

⎪ ⎩ 

x i , x j ∈ X 

c 
s 

x i , x j ∈ X 

c 
t 

x i ∈ X 

c 
s , x j ∈ X 

c 
t 

x i ∈ X 

c 
t , x j ∈ X 

c 
s 

0 , otherwise, 

(14) 

his formula means that the edge weights of two samples are cal-

ulated only when the labels of them are identical. 

Combining Eqs. (11) and (13) , joint distribution based graph

aplacian regularization approximates the manifold in training and

esting distribution. And it can be rewritten as: 

 r 
(
αT K L 0 K α

)
+ t r 

(
αT K L c K α

)
= t r 

(
αT KLK α

)
(15)

here L 0 and L c are the normalized graph Laplacian matrix with

arginal distribution and conditional distribution, respectively.

urthermore, they can be computed as L = I − D 

− 1 
2 W D 

− 1 
2 , where

 is diagonal matrix with each elements D ii = 

∑ n 
j=1 W i j . 

.4. Optimization algorithms 

Finally, the joint distribution based adaptive classifier is ob-

ained by incorporating prediction losses, joint distribution and

raph Laplacian regularization. Combining Eqs. (3) , (10) and (15) ,

he final objective function is as follows: 

arg min 

α

∥∥(
y T − αT K 

)
E 

∥∥2 

F 
+ λtr 

(
αT K α

)
+ βt r 

(
αT KMK α

)
+ γ t r 

(
αT KLK α

)
(16) 

here λ, β and γ are positive regularization parameters, respec-

ively, shrinkage parameter, MMD parameter and graph Laplacian

arameter. The pseudo labels are easily obtained by a standard

lassifier, e.g., Support Vector Machine (SVM). However it also can

e acquired by an adaptive classifier, modifying formula (16) to

arginal distribution based adaptive classifier. And setting the

erivative of Eq. (16) as 0, the marginal distribution based adap-

ive classifier parameters are as follows: 

0 = ( λI + ( E + βM 0 + γ L 0 ) K ) 
−1 

Ey (17) 

here M 0 , L 0 are MMD parameter and graph parameter of

arginal distributions. By substituting Eq. (17) into prediction

unction (1) , a simple adaptive classifier is learned to obtain first-

ime pseudo labels of testing data. It is worth noting that the out-

uts, pseudo labels of testing data can be used as inputs to boost

he classifier more accurate. Then the derivative of formula (16) is

et as 0, the joint distribution based adaptive classifier parameter

an be computed as: 

= ( λI + ( E + βM + γ L ) K ) 
−1 

Ey (18) 

he final classifier can be obtained by incorporating Eq. (18) into

1) . This paper iterates the pseudo testing labels to make it steady.

he overall algorithm of this paper is given in Algorithm 1 . 

. Experiments 

In this section, we conduct extensive experiments on two

eal-world data sets, MIRFlickr 1M [35] , Amazon and WebVision

36] ( Fig. 4 .), to evaluate the performance of our proposed JDAC.

ur work aims to moving steganalysis from laboratory into real

orld, so image dataset are chosen from the Internet, such as,

mage sharing and shopping websites. This paper addresses the

roblems of steganalysis with steganographic algorithm mismatch

SAM) and cover source mismatch (CSM). 
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Fig. 4. The experimental dataset, MIRFlickr 1M, Amazon and WebVision. 

Algorithm 1 JDAC: joint distribution based adaptive classifier. 

Input: 

Training set X s , testing set X t , training set labels y s ; λ, β , γ ; 

k = 0 , MaxIters 

Output: Adaptive Classifier f 

1: Compute kernel matrix K by K = �( X ) �( X ) T with kernel func- 

tion K 

(
x i , x j 

)
; 

2: Construct MMD matrix M 0 by Equation (5) and graph Laplacian 

matrix L 0 by Equation (11); 

3: Compute adaptive classifier parameters α0 by Equation (18) 

and obtain pseudo labels of testing data; 

4: repeat 

5: k = k + 1 ; 

6: Construct MMD matrix M by Equation (10) and graph Lapla- 

cian matrix L by Equation (15); 

7: Compute adaptive classifier f by Equation (17) and obtain 

pseudo labels of testing data; 

8: until α is converged or k > MaxIters 

9: return Adaptive Classifier f . 
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4.1. Data set 

MirFlickr 1M [35] contains one million images which are col-

lected from YAHOO’s Flickr that is an image social network web-

site. The MIR Flickr collect high-quality photographic images from

thousands of Flickr users, made available under the Creative Com-

mons license. The dataset has a wide variety of categories which
ontains landscapes, characters, animals, buildings, objects and so

n. It also provides information of image tags, licenses and EXIF.

nd most of the image quality factors (QF) in MirFlickr dataset

re 96, but there are also some other quality factors in the im-

ge. The image sizes in this database are less than 500 × 500, we

onsider that it may be because the constructor of the dataset

ay resize the images when they collected these images. More

etailed introduction and download of MirFlickr can be found on

ttp://press.liacs.nl/mirflickr/ . 

In addition, we obtain 50 0 0 images of the goods by download-

ng on shopping website ( https://www.amazon.cn ). We crawled the

mages from the mentioned website. The dataset contains many

ypes of goods, including food, clothes, books, medicines, electronic

roducts and so on. But in order to collect pictures quickly and

onveniently, when we download images from the website, we set

he quality factor of the images to 85, and the size of the images

s limited to less than 500 × 500. 

In order to verify the robustness of our method for more dif-

erent image sizes, we add a new WebVision dataset [36] . The We-

Vision dataset contains more than 2.4 million of images crawled

rom the Flickr website and Google Images search. Images in this

atabase are naturally collected from two domains, Flickr and

oogle, so we implemented the experiment with cover source mis-

atch on this dataset. The quality factors of images from Web-

ision are very complex, the largest is 100 and the smallest is

0. And it contains a wide variety of image sizes, the largest of

hich is 4752 × 3168 and the smallest is 80 × 80. More detailed

ntroduction and download of WebVision can be found on http:

/www.vision.ee.ethz.ch/webvision/2017/index.html . 

http://press.liacs.nl/mirflickr/
https://www.amazon.cn
http://www.vision.ee.ethz.ch/webvision/2017/index.html
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Table 2 

Detection accuracy (%) on MIRFlickr 1M with 20% embedding payloads. 

SVM GTCA RDFT ARTL JDAC_marginal JDAC 

F5 vs OutGuess 56.4 62.0 66.9 76.3 82.8 83.4 

F5 vs MBS 77.8 90.8 83.6 88.6 90.5 91.9 

F5 vs Jsteg 68.4 97.8 92.9 93.1 92.0 93.5 

F5 vs nsF5 75.3 72.9 82.2 67.9 74.7 71.4 

OutGuess vs F5 61.4 75.0 65.4 87.1 86.7 88.1 

OutGuess vs MBS 91.2 95.3 92.3 93.0 90.0 91.3 

OutGuess vs Jsteg 93.9 98.0 96.6 88.7 85.3 86.3 

OutGuess vs nsF5 55.1 54.8 60.0 70.4 74.4 74.9 

MBS vs F5 59.3 76.2 67.4 90.7 92.6 93.9 

MBS vs OutGuess 70.6 80.2 79.4 83.7 87.3 87.9 

MBS vs Jsteg 89.6 98.2 95.1 96.9 95.5 96.4 

MBS vs nsF5 53.9 58.1 61.3 66.9 74.7 72.6 

Jsteg vs F5 50.1 69.3 50.0 76.1 91.4 93.6 

Jsteg vs OutGuess 50.3 64.3 50.0 71.1 83.3 83.3 

Jsteg vs MBS 50.7 82.0 50.0 92.8 94.7 95.7 

Jsteg vs nsF5 50.1 54.2 50.0 61.0 70.9 65.2 

nsF5 vs F5 94.8 92.2 94.8 85.3 87.9 88.7 

nsF5 vs OutGuess 67.3 69.2 69.7 75.9 76.7 75.6 

nsF5 vs MBS 85.5 93.3 83.5 78.9 80.4 80.0 

nsF5 vs Jsteg 89.5 96.3 90.4 80.0 78.6 79.3 

Average 69.56 79.01 74.08 81.22 84.52 84.65 
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.2. Experimental settings 

A total of 1300 images are respectively randomly selected from

 datasets as experimental images, which are MIRFlickr 1M, Ama-

on datasets and webvision’ s flickr and webvision’ s google. In

act, it cannot know whether these images from the Internet have

ome images that have been hidden secret messages. There is an

mportant assumption that the images are all covers. This assump-

ion is difficult to prove, but we all know that there are very few

eople who know how to use steganography technology, so stego

mage is negligible. The same assumption has been adopted in pre-

ious work on the Internet image steganalysis [19,33] . In order

o generate stego images, we adopt the commonly used stegano-

raphic algorithms that are F5 [37] , nsF5 [38] , MBS [39] , OutGuess

40] and Jsteg [41] , respectively. Moreover, we set the payload to

0% of maximum embedding capacity. These 10 0 0 images are ran-

omly divided into training and testing sets and both sets contain

over and stego images. 

It is worth noting that our work does not try to detect stego im-

ges which are generated by J-UNIWARD [42] algorithm. It is sure

hat matched is better than mismatched steganalysis. But the per-

ormance of J-UNIWARD steganalysis is terrible under match con-

ition. Therefore we consider that how to improve the detection

ccuracy of J-UNIWARD in matched condition is more important.

nd there is no point in conducting experiments on J-UNIWARD to

rove the effectiveness of our proposed JDAC. 

In addition, PEV-274 is adopted as steganalysis feature, be-

ause its dimension is lower than JRM and the calculation is sim-

ler. PEV-274 consists of 193-dimensional DCT features and 81-

imensional average calibrated Markov features. The classifier is

ur proposed JDAC, which involves three trade-off parameters,

amely, shrinkage parameter, MMD parameter and graph Laplacian

arameter. In the experiment, we have been set up a verification

et for each dataset, which contains 300 images different from the

raining set and the testing set. And we optimized the parameters

f our proposed JDAC and the other 4 compared methods, accord-

ng to the results of verification set. According to parameter sensi-

ivity analysis experiment, we set the parameters λ = 1 , β = 100 ,

= 1 , with the highest detection accuracy. 

We consider that only marginal distribution is insufficient to

escribe distribution differences between source and target do-

ains. Therefore, JDAC adopts the joint distribution adaptation

nd also uses the graph Laplacian regularization based on joint
istributions. In order to verify the validity of conditional distribu-

ion, we added a compared method (JDAC_marginal) which adopts

nly marginal distribution. JDAC and JDAC_marginal are both our

ethods. Our method is compared with several state-of-the-art al-

orithms: 

SVM [43] : Support Vector Machine is a baseline classifier. We

rain it on labeled training data with original PEV-274 feature. 

GTCA+SVM [14] : Generalized Transfer Component Analysis is

n improvement version on TCA by introducing the alignment of

ean and variance between training and testing data. GTCA adopts

VM as classifier, since it calculates conditional adaptation with the

osterior probability obtained by SVM. 

RDFT+SVM [13] : Robust Discriminative Feature Transformation

s a method of subspace transfer learning. This method constructs

 latent feature representation by reducing the distribution differ-

nce and keeping the classification ability of training set. Following

13] , SVM is trained on feature subspace of labeled training data. 

ARTL [21] : Adaptation Regularization Transfer Learning belongs

o constructing an adaptive classifier. 

.3. Experimental results 

The experiments evaluate the performance of our proposed

DAC_marginal, JDAC and the other four algorithms by showing av-

rage total accuracy P A under equal priors achieved on testing set,

 A = 

1 
2 a v e ( p c + p s ) , where p c is the classification accuracy rate of

over images, and p s is the detection accuracy rate of stego images.

n order to ensure the effectiveness of our algorithm, we repeated

ll experiment results 5 times and took the average as final results.

The experiments of mismatched steganalysis are composed by

wo parts, which are Steganographic Algorithms Mismatch (SAM)

nd Cover Source Mismatch (CSM), respectively. 

.3.1. Steganographic algorithms mismatch (SAM) 

In this experiment, 1300 images are randomly selected in MIR-

lickr 1M as the training, verification and testing sets. SAM means

hat the methods to generate stego images of training and test-

ng sets are different. The experiment is a mutual detection of 5

teganographic algorithms, namely, F5, OutGuess, MBS, Jsteg, nsF5.

he detection accuracies of our proposed JDAC and 4 compared

lgorithms on SAM are shown in Table 2 , where F5 vs OutGuess

eans that the algorithm of generating stego images in training

et is F5 and in testing set is OutGuess . 
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Table 3 

Detection accuracy (%) of CSM, between MIRFlickr 1M and Amazon with 20% embedding payloads. 

SVM GTAC RDFT ARTL JDAC_marginal JDAC 

F5 75.4 73.7 79.4 87.9 82.0 94.7 

MRIFlickr 1M OutGuess 86.9 94.8 90.9 84.5 81.3 86.9 

vs MBS 88.3 88.0 88.8 71.9 81.2 87.8 

Amazon Jsteg 98.8 99.7 99.1 98.1 90.6 99.4 

nsF5 65.1 58.4 66.1 63.5 66.8 66.3 

F5 65.0 81.1 74.7 62.1 86.3 91.2 

Amazon OutGuess 52.3 69.7 64.6 59.0 77.7 80.2 

vs MBS 83.6 79.7 88.0 70.2 84.0 94.3 

MRIFlickr 1M Jsteg 67.5 96.1 92.8 98.1 86.9 98.3 

nsF5 68.8 65.7 71.9 75.6 77.9 78.3 

Average 75.17 80.69 81.63 77.09 81.47 87.74 

Table 4 

Detection accuracy (%) of CSM, between WebVision’s Flickr and WebVision’s Google with 20% embedding payloads. 

SVM GTAC RDFT ARTL JDAC_marginal JDAC 

F5 73.2 61.6 71.7 76.4 72.6 75.0 

WebVision’s Flickr OutGuess 81.2 69.9 79.4 85.3 85.0 87.4 

vs MBS 83.8 70.9 84.3 85.7 87.0 88.2 

WebVision’s Google Jsteg 93.7 85.2 88.4 91.1 95.3 95.5 

nsF5 62.1 54.5 61.9 63.5 61.3 64.0 

F5 69.0 53.1 68.5 70.9 72.8 75.4 

WebVision’s Google OutGuess 89.6 77.5 88.2 88.5 90.9 92.2 

vs MBS 89.0 80.8 89.9 87.4 92.0 92.5 

WebVision’s Flickr Jsteg 95.7 92.2 93.5 92.7 95.8 95.7 

nsF5 42.4 43.6 55.3 63.1 63.2 65.7 

Average 77.97 68.93 78.11 80.46 81.59 83.16 

Fig. 5. The convergence process of JDAC on two detection tasks with Steganographic Algorithms Mismatch. 
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We can see that SVM is the baseline of this experiment, and

the average detection accuracy of SVM is only 69.56%. In fact, this

method is completely mismatched steganalysis, which means that

the classification model learnt from the source domain is directly

used for the classification task of the target domain. In most tasks,

it will achieve poor detection accuracy. We can also observe that

RDFT performs best on 2 tasks, and the average accuracy is about

4.5% higher that baseline. On the F5 vs nsF5 task, the detection

accuracy of RDFT is 10.8% higher than our proposed JDAC. This is

reasonable since the constraint term which keeps the classification

ability of training data preserves the important property. In these

tasks, the detection accuracy of GTCA is over 5% higher than RDFT.

And we can see that GTCA performs best on 6 tasks. 

Second, it can be observed that the algorithms of domain adap-

tive classifier are better than subspace transfer learning in these

experiments. ARTL is only worse than our proposed JDAC_marginal

and JDAC, and the goal of the three methods is to construct an

adaptive classifier. And the average detection accuracy of ARTL is

2% higher than GTCA. Our proposed JDAC has an improvement

based on ARTL, because we consider the conditional graph Lapla-

cian regularization. JDAC increases the accuracy by about 3 % on

average. We can see that the accuracy of JDAC is higher than ARTL
n 15/20 tasks, and JDAC performs best on 9 tasks. Compared with

DAC_marginal, JDAC achieves higher detection rate and performs

etter on 15/20 tasks. This shows that the joint distribution adap-

ation can effectively improve the detection performance by using

seudo labels to calculate conditional distribution in mismatched

teganalysis. 

.3.2. Cover source mismatch (CSM) 

Our algorithm is also effective for Cover Source Mismatched

teganalysis. We set training and testing sets from different

atabases, where MIRFlickr 1M vs Amazon represents the training

mages chosen from MIRFlickr 1M , and testing from Amazon .

oreover, we conduct the experiments on 5 steganographic algo-

ithms and control the methods of constructing the stego images

re identical. The detection accuracy rate of CSM is shown in

ables 3 and 4 . 

It can be seen in Table 3 that the methods of subspace transfer

earning, GTCA and RDFT, are better than the baseline SVM by 5

, and 3.5 % higher than ARTL. In addition, GTCA performs best on

 tasks. And on the task of MIRFlickr 1M vs Amazon with OutGuess ,

TCA increases the accuracy by about 4 % than other methods. Sec-

ndly, the adaptive classifier ARTL is worse than GTCA and RDFT
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Fig. 6. The convergence process of JDAC on two detection tasks with Cover Source Mismatch. 

Fig. 7. Parameter analysis for JDAC on 3 tasks with SAM. 
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n average by 5%, and it performs best on 1 task. In the Table 3 ,

t can be seen that the detection accuracy on average of our pro-

osed method JDAC is the highest, and it increases accuracy over

% higher than other methods. JDAC achieves the best accuracy in

/10 tasks. 

Images in WebVision database are naturally collected from two

omains, Flickr and Google, so we implemented the experiment

ith cover source mismatch on this dataset, and the results are

hown in the Table 3 . The experiment is a mutual detection

etween the 2 domains, where WebVision’s Flickr vs WebVision’s

oogle represents the training images chosen from WebVision’s

lickr , and testing from WebVision’s Google . Compared with other

ethods, it can be seen that JDAC also achieves the best perfor-
ance on WebVision, and the best detection accuracy in 8/10

asks. Table 3 shows that the algorithms of domain adaptive

lassifier are better than subspace transfer learning in this dataset.

ur proposed JDAC increases accuracy by 2.7% on average than

RTL. And JDAC_margial achieves the best result on 1/10 task, and

s only 0.1% higher than JDAC. 

The experimental results in Tables 3 and 4 also show that

oint distribution can effectively im prove the performance of JDAC

ith Cover Source Mismatch(CSM). Compared with JDAC_marginal,

DAC increases the average accuracy by about 6% in Table 3 , and

ncreases the accuracy by about 1.6% in Table 3 . In addition, several

alues are below 50%. For example, in Task of WebVision’s Flickr

s WebVision’s Google with nsF5 , we can see that the detection
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Fig. 8. Parameter analysis for JDAC on 3 tasks with CSM. 
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accuracy of SVM is 42.4%. These cases occur when the steanogra-

phy method is nsf5. The main reason is that nsF5 is an improved

version of F5 and has higher security. And our experiments are

based on cross-domain steganalysis, so a well-trained classification

model in the source domain has the possibility that it cannot solve

the classification task of the target domain, which leads to the

opposite classification results, so that the accuracy is less than 50%.

4.4. Convergence 

We illustrate the convergence of our proposed adaptive classi-

fier algorithm JDAC in this subsection and respectively verify the

convergence of JDAC on SAM and CSM. The objective function

value of Eq. (16) is plotted as the number of iterations increases

in Figs. 5 and 6 . Due to the limitation of space, we only show 2

tasks to each mismatch. Fig. 5 shows the tasks of F5 vs MBS and

OutGuess vs Jsteg , Fig. 6 shows the tasks of MIRFlickr 1M vs Amazon

F5 and MBS . We keep the experimental setting the same as per-

vious subsection. It can be found that the value of the objective

function converges after the 10 iterations. 

4.5. Parameter sensitivity 

In the experiment, we have set up a verification set for each

dataset, which contains 300 images different from the training set

and the testing set. And we optimized the parameters of our pro-

posed JDAC_marginal, JDAC and the other 4 compared methods,

according to the results of verification set. Our proposed joint dis-

tribution based adaptive classifier (JDAC) contains three trade-off

parameters. This subsection demonstrates that our proposed JDAC

performs well in a large range of parameters. Similar to pervious

subsection, the parameters analyses are divided into SAM and CSM.

Limited to space, we only illustrate the experiment results on the
asks of F5 vs MBS, OG vs Jsteg and nsF5 vs F5 on SAM, and show 3

asks to analyse parameter with CSM. In addition, the results of pa-

ameter sensitivity analysis are similar on other mismatched tasks.

Experiments are conducted with a set of different α values

nd keep the values of the other two parameters fixed, λ∈ [0.001,

0 0 0]. Each experiment runs 5 times and the average accuracy are

hown in Figs. 7 and 8 (a). It shows that JDAC is bit sensitive to

hrinkage parameter λ, and the JDAC performs best when λ = 1 . 

The MMD parameter β affects the joint distribution adaptation

etween training and testing sets. Similarly, we set the β ∈ {0.001,

.01, 0.1, 1, 10, 100, 10 0 0}, and keep the values fixed for the other

arameters. From Figs. 7 and 8 (b), we can observe that our pro-

osed JDAC is not sensitive in a wide range to β ∈ [10, 10 0 0]. And

ur method is insensitive to graph Laplacian parameter γ and it

chieve a satisfactory performance in a wide range γ ∈ [0.001, 1]. 

. Conclusion 

In this paper, we proposed a novel joint distribution based

daptation classifier (JDAC) for mismatched steganalysis on Inter-

et images. This paper is an attempt to move steganalysis from

aboratory to real-world. That is more practical to tackle the ste-

analysis on the Internet. And JDAC aims to obtain an effective

lassifier on sufficient labeled training data for unlabeled testing

amples. JDAC integrates the joint distribution adaptation and geo-

etrical structure as a regularization term to a standard classifier.

n addition, we design the conditional geometrical structure, which

xtends the graph Laplacian regularization from marginal to joint

istribution. It reduces the distributions difference and preserves

he important properties of original data. Extensive experiments

how that our proposed method performs better on steganographic

lgorithm mismatch (SAM) and cover source mismatch (CSM) than

everal state-of-the-art related methods. 
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