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Abstract We consider M-level pulse amplitude modulation (M-PAM) spread-
spectrum (SS) data embedding in transform domain host data. The process of data
embedding can be viewed as delivering information through the channel including
additive interference from host that is known to the embedder. We first utilize the
knowledge of second-order statistics of host to design optimal carrier that maxi-
mizes the signal-to-interference-plus-noise ratio at the decoder end. Then, inspired
by Tomlinson–Harashima precoding used in communication systems, a symbol-by-
symbol precoding scheme is developed for M-PAM SS embedding to alleviate the
impact of the interference which is explicitly known to embedder. For any given
embedding carrier and host data, we aim at designing precoding algorithm to min-
imize the receiver bit error rate (BER) with any given host distortion budget, and
conversely minimize the distortion at any target BER. Experimental studies demon-
strate that the proposed precoded SS embedding approach can significantly improve
BER performance over conventional SS embedding schemes.
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1 Introduction

Data embedding has raised extensive attention in recent years with the increasing
demand of security and privacy in digital media services. Various applications emerge
along with the blooming of this technology such as annotation, copyright marking,
watermarking, ownership protection, authentication, digital fingerprint, as well as
covert communications and steganography [8,10,16,19–21,28,29,38]. As a general
encompassing comment, different applications of data embedding require different
satisfactory trade-offs between the following four basic attributes [35]: Payload—
data delivery rate; robustness—embedded data resistance to noise and disturbance;
transparency—low host distortion for concealment purposes; and security—inability
by unauthorized users to detect and access the embedded data.

Embedding process is a crucial step in the design of data embedding systems
because distortion, payload, embedded data detector design, and recovery perfor-
mance depend heavily on how the data are inserted in the host. Data embedding can
be performed either directly in the time/spatial domain [5,9,17,23,32] or in a trans-
form domain (for example, for images, we may consider full-frame discrete Fourier
transform (DFT) [3,4,7], block DFT or DCT [2,15,26,30,39], or discrete wavelet
transforms (DWT) [24,25,37]).

Spread-spectrum (SS) data embedding [11,12,22,34,36] is a branch of transform
domain data embedding family tree and enjoys wide popularity in data embedding
community, especially for watermarking-related applications. It is derived from SS
digital communication systems [13] and utilizes a modulated carrier to deposit one
information symbol across a group of host data coefficients or a linearly transformed
version of them. In direct analogy to SS digital communication systems, the informa-
tion inserted into the host data is considered as the desired signal, while the host media
are treated as interference during SS data embedding procedure. However, unlike SS
communications, this interference is explicitly known to the embedder. With proper
design, this unique characteristic can play an important role in host distortion reduction
and embedding message recovery.

In this paper, we investigate M-level pulse amplitude modulation (M-PAM) SS
data embedding in transform domain host. In particular, the adoption of M-PAM can
allow the host to accommodate more embedded data during embedding procedure and
therefore provides higher payload rate than the existing binary symbol SS embedding
algorithms. However, challenges always come along with opportunities. The introduc-
tion of M-PAM also arouses a crucial problem to the current SS embedding system:
While higher-order modulation allows higher payload rate, detection error will also
increase. Therefore, in this paper, we develop new optimal carrier and precoding
designs for M-PAM SS data embedding which can minimize the bit error rate (BER)
at a given host distortion budget. The contributions of this paper are summarized in
the following.
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• We propose optimal carrier design for M-PAM SS data embedding.

Recently, an optimal carrier for binary symbol data embedding was presented in
[11,12] by exploiting the second-order statistics (SOS) of the host data. Inspired by this
result, we develop an eigen-based optimal carrier design forM-PAMSS embedding in
linear-transform host media by considering the characteristic of SOS of the host data.
The proposed design can maximize the signal-to-interference-noise ratio (SINR) at a
given host distortion budget, which is equivalent tominimize theBERof the embedded
data at a given host distortion budget.

• We develop a novel precoding design for M-PAM SS data embedding.

The proposed precoding design is inspired by the idea of “Dirty Paper Coding”
(DPC) and can be utilized with or without the proposed optimal carrier scheme in SS
embedding systems. In the next two paragraphs, we shall demonstrate the motivation
and the design of the proposed precoding algorithm.

As is known, in SS data embedding systems, the impact of interference from the
host signal is explicitly known to the embedders and therefore can be further alleviated
by performing precoding at the embedder side. In Costa’s seminal paper “Writing on
dirty paper” [6], this scenario is modeled as a writer who strategically adapts his
writing in order to avoid the dirt (interference) on a piece of paper and help the reader
decode the message without knowing where the dirt is. The Costas dirty paper coding
(DPC) scheme can theoretically achieve the same capacity of the channel in which the
interferencewas not present. However, Costa’s DPC scheme is not impractical for real-
world implementation since it requires an infinite length of codewords and codebooks.
In [1], a dirty trellis embedding algorithm is proposed with a theoretical capacity close
to Costa’s scheme in the moderate-to-low bit error rate regime. Since this approach
is based on serially concatenated convolutional coding, the encoder and decoder are
relatively complicated comparedwith the existing binary symbol embedding schemes.
Tomlinson–Harashima precoding (THP), initially proposed for temporal inter-symbol
interference mitigation [14,31], is a well-known practical DPC scheme with simple
implementation structure. Since the THP precancels the interference of each symbol
individually, it can be considered as a one-dimensional implementation of DPC.

Inspired by THP in communication systems, we develop a symbol-by-symbol pre-
coding scheme for M-PAM SS data embedding in this paper. The proposed scheme
can extensively reduce the influence of host media (interference) to the embedded
data. For any given embedding carrier/signature and the host data, the proposed pre-
coding algorithm aims at minimizing the receiving BER with a given host distortion
budget, or conversely minimizing the distortion at a target BER. Experimental studies
demonstrate that the proposed precoding design can significantly improve the BER
performance of M-PAM SS data embedding systems.

The rest of the paper is organized as follows. In Sect. 2, the M-PAM SS embedding
is presented, and optimal carrier design is proposed. Then, M-PAM SS embedding
with precoding is developed in Sect. 3. Section 4 is devoted to experimental studies
and comparisons. A few concluding remarks are drawn in Sect. 5.

The following notation is used throughout the paper. Boldface lowercase letters
indicate column vectors and boldface uppercase letters indicate matrices; R denotes
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the set of all real numbers;Z denotes the set of all integer numbers; ()T denotes matrix
transpose; IL is the L × L identity matrix; sgn{·} denotes zero-threshold quantization;
E{·} represents statistical expectation; ‖ ·‖ is vector norm; round(x) denotes as round-
ing a real number x to the nearest integer value; mod(x, y) denotes modulo operation
that finds the remainder of division of x by y, y �= 0.

2 M-PAM SS Embedding

2.1 Signal Model and Notation

Consider a host imageH ∈ MN1×N2 whereM is the finite image alphabet and N1×N2
is the image size in pixels. Without loss of generality, the image H is partitioned into
N local non-overlapping blocks of size N1N2

N . Each block,H1,H2, . . . ,HN , is to carry
one information bit bi , i = 1, 2, . . . , N , respectively. Embedding is performed in a 2D
transform domain T (such as the discrete cosine transform and a wavelet transform).
After transform calculation and vectorization (for example by conventional zigzag

scanning), we obtain T (Hi ) ∈ R
N1N2
N , i = 1, 2, . . . , N . From the transform domain

vectors T (Hi ), we choose a fixed subset of L ≤ N1N2
N coefficients (bins) to form the

final host vectors xi ∈ R
L , i = 1, 2, . . . , N . It is common and appropriate to avoid

the dc coefficient (if applicable) due to high perceptual sensitivity in changes in the
dc value.

The autocorrelation matrix of the host data x is an important statistical quantity for
our developments and is defined as

Rx � E{xxT } = 1

N

N∑

i=1

xixTi . (1)

It is easy to verify that in general Rx �= αIL , α > 0, that is, Rx is not constant-value
diagonal or “white” in field language. For example, 8× 8 DCT with 63-bin host data
formation (excluding only the dc coefficient) for the 256 × 256 gray-scale Baboon
image in Fig. 1a gives the host autocorrelation matrix Rx in Fig. 1b [12].

2.2 M-PAM SS Embedding

To draw a parallelism with SS communication systems, conventional SS embedding
treats embedded message as the SS signal of interest transmitted through a noisy
“channel.” The disturbance to the SS signal of interest is the host data themselves plus
potential external noise due to physical transmission of the watermarked data and/or
processing/attacking. In particular, conventional additive SS embedding is carried out
in the transform domain by

yi = Abi s + xi + ni , i = 1, . . . , N , (2)
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Fig. 1 a Baboon image example H ∈ {0, 1, . . . , 255}256×256. b Host data autocorrelation matrix (8 × 8
DCT, 63-bin host) [12]
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Fig. 2 M-PAM constellation

where information symbolbi is embedded in the transformdomain host vectorxi ∈ R
L

via additive SS embedding by means of a carrier s ∈ R
L , ‖s‖ = 1, with a correspond-

ing embedding amplitude A > 0. For the sake of generality, ni represents potential
external white Gaussian noise1 of mean 0 and autocorrelation matrix σ 2

n IL , σ
2
n > 0.

While binary symbol bi ∈ {±1} is the simplest and most common case in previous
works; in this paper, we extend our scope to usemore symbol alphabets in order to pro-
vide SS embedding with ability to embed/deliver more data. M-level pulse amplitude
modulation (M-PAM) is adopted, and the information symbol bi to be embedded is
selected from an M alphabet set AM � {±(2m − 1),m = 1, . . . , M/2, M is even}.
With an amplitude A, the constellation points are {±A(2m − 1),m = 1, 2, . . . , M/2}
as shown in Fig. 2.

Squared Euclidean metric is rudimentary but common choice to measure the distor-
tion. The mean-squared (MS) distortion to each host vector (i.e., each block of image)
due to embedding only is

D = E ‖(Abi s + xi ) − xi‖2 = E{bi }A2 = M2 − 1

3
A2. (3)

The intended recipient of the message can perform matched filtering (MF)

ri = sT yi (4)

and then recovers the embedded symbols by

b̂i = arg min
b∈AM

|ri − Ab| . (5)

Or equivalently, embedded symbols can be recovered by following simple operation

b̂i =
⎧
⎨

⎩

M − 1, if ri > (M − 1)A;
−(M − 1), if ri < −(M − 1)A;
round ((ri/A + 1)/2) 2 − 1, else.

(6)

1 AdditivewhiteGaussian noise is frequently viewed as a suitablemodel formalicious or accidental attacks,
such as quantization errors, channel transmission disturbances, and/or image processing attacks.



Circuits Syst Signal Process (2016) 35:1333–1353 1339

2.3 Carrier Optimization

With the signal of interest Abi s and total disturbance (xi + ni ) in (2), the SINR of the
output of matched filter in (4) is

SINR = E{‖Abi (sT s)‖2}
E{‖sT (xi + ni )‖2} =

M2−1
3 A2

sT (Rx + σ 2
n IL)s

.

It is understood that the host xi , which is interference to the signal of interest, is
known to the embedder. By exploiting Rx, i.e., the SOS of the host, optimal carrier
that maximizes the output SINR has been presented in Proposition 1 whose proof is
straightforward and omitted.

Proposition 1 Consider additive SS embedding according to (2). Let q1,q2, . . . ,qL
be eigenvectors ofRx in (1) with corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL . For
any hidden message-induced distortion level D, a carrier that maximizes the output
SINR of the matched filter is

sopt = qL . (7)

With this optimal carrier, the matched filter is also a maximum SINR filter, and the
output SINR is maximized at

SINRmax =
M2−1

3 A2

λL + σ 2
n

= D
λL + σ 2

n
. (8)

If we are allowed to assume that xi is Gaussian, the symbol error rate (SER) of the
recovered message is

SER = 2(M − 1)

M
Q

(√
3

M2 − 1
SINR

)
(9)

where Q(a) = ∫ ∞
a

1√
2π

e−τ 2/2dτ . With Gray-coded symbol, the bit error rate (BER)
is

BER = SER

log2M
. (10)

We see that SER and BER are monotonically decreasing functions of SINR, and then,
the optimization on maximizing SINR is equivalent to minimize probability of error.

2.4 SS Embedding on Linearly Transformed Host

In an effort to reduce the interference effect of the host signal, the host vectors xi ,
i = 1, . . . , N , can be steered away from the embedding carrier using an operator of
the form (IL − cssT ) with a parameter c ∈ R and the carrier s ∈ R

L . In parallel to
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(2), the composite signal of additive SS embedding on linearly transformed host data
is [11,12,22]

yi = Abi s + (IL − cssT )xi + ni , i = 1, . . . , N , (11)

where information symbol bi is embedded, using amplitude A > 0 and (normalized)
carrier s ∈ R

L , ‖s‖ = 1, in the i th linearly transformed host data vector (IL −cssT )xi .
The output SINR of MF is

SINR = E{‖Abi‖2}
E{‖sT ((IL − cssT )xi + n)‖2} . (12)

The mean-squared distortion due to the embedding operation only is

D = E

{
‖
(
Abi s + (IL − cssT )xi

)
− xi‖2

}

= M2 − 1

3
A2 + c2sTRxs. (13)

It should be noticed that, in contrast to (3), the distortion level is controlled not only
by A but by c and s as well. Comparing to conventional SS embedding in (2), SS
embedding on linearly transformed host utilizes part of available distortion to presup-
press the interference at the embedding side and then uses the remaining distortion
to embed information bits. With any given distortion budget, the transform parameter
c, amplitude A, and optimal carrier s to maximize the output SINR are presented in
Proposition 2 whose proof is offered in the “Appendix.”

Proposition 2 Consider additive SS embedding in linearly transformed host data by
(11), and secret message is recovered by matched filter. For any hidden message-
induced distortion budget D and any carrier s, the optimal amplitude A and
transformation parameter c to maximize the SINR of matched filter are

copt = α + σ 2
n + D − √

(α + σ 2
n + D)2 − 4αD

2α
, (14)

Aopt =
√

3

M2 − 1

(
D − copt2α

)
, (15)

where α � sTRxs. The output SINR is maximized to

SINRmax = D − copt2α

α(1 − copt)2 + σ 2
n

. (16)

Let q1,q2, . . . ,qL be eigenvectors of Rx in (1) with corresponding eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λL . The optimal carrier to maximize output SINR is

sopt = qL . (17)
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With this optimal carrier sopt, the corresponding optimal c and A can be calculated
by (14) and (15) with α � sTRxs = λL , and the matched filter is also a maximum
SINR filter.

The effort on optimal carrier design developed in this section attempts to maximize
SINR by utilizing the SOS of the host Rx. It should be noticed that the impact of
interference from the explicitly known host signal can be further alleviated if each
symbol is precoded adaptively to precancel interference at the embedder side. In next
section, we pursue further optimal symbol-by-symbol adaptive precoding for M-PAM
SS embedding to compensate for the known interference.

3 M-PAM SS Embedding with Precoding

With precoding scheme, instead of embedding the information symbol bi directly,
we precode bi to ui and then embed ui into host xi via a carrier s. The M-PAM SS
embedding with precoding is modeled in a form of

yi = ui s + xi + ni (18)

where ui is precoded symbol based on information symbol bi and host/interference xi .
We need to choose ui (as a function of bi and xi ) such that the embedded information
symbol bi can be decoded as the host signal (interference) xi is present and unknown.

The signal after matched filtering can be expressed as

ri = sT yi (19)

= ui sT s + sT xi + sTni (20)

= ui + zi + ni (21)

where we define zi � sT xi , ni � sTni . The application of data embedding is con-
sidered to convey information symbols bi by ui to the receiver in the presence of
interference zi and noise ni . In particular, interference zi can be approximately viewed
as having generalized Gaussian distribution [26] or Laplace distribution [18] with zero
mean and variance σ 2

z � E{z2i } = sTRxs. Additive white Gaussian noise ni has zero
mean and variance σ 2

n .
With a determined carrier s and host vectors xi , i = 1, . . . , N , the interference zi ,

i = 1, . . . , N , is explicitly known and can be precanceled at the embedder side. The
simplest way to compensate for the interference zi is to select ui such that the symbol
bi is modulated into the corresponding constellation point Abi , i.e.,

ui + zi = Abi , i = 1, . . . , N . (22)

Thus, the precoded symbol for interference precancelation is

ui = Abi − zi , i = 1, . . . , N . (23)
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Fig. 3 a Four-point constellation. b Four-point constellation is replicated along the entire line

The squared distortion to the i th host vector due to the embedded data only is

Di = ‖(ui s + xi ) − xi‖2 = u2i , i = 1, . . . , N . (24)

The MS host distortion is

D = E{Di } = E{u2i } = E{(Abi − zi )
2} = M2 − 1

3
A2 + σ 2

z . (25)

The SER of the recovered message is

SER = 2(M − 1)

M
Q

(
A

σn

)
. (26)

With Gray-coded symbol, the BER is

BER = SER

log2M
= 2(M − 1)

M log2M
Q

(
A

σn

)
. (27)

The problem of the interference precancelation for regular modulation in (23) is
that the interference zi may be arbitrarily far away from desired constellation points.
Here is an example shown in Fig. 3a for 4-PAM case. We want to modulate symbol
to constellation point 3A, while the interference is zi . To precancel a large interfer-
ence zi , we need a precoded symbol ui with a large absolute value and consequently
introduce strong distortion to the host. Actually, even for the worst case A = 0 which
results BER = 0.5, we still have to induce distortion at a level D = σ 2

z = sTRxs.
Therefore, host-adaptive optimal carrier is still favorable in this interference precan-
celation scheme to minimize the variance of interference σ 2

z . However, regretfully,
host-adaptive optimal carrier is not always applicable for all data embedding applica-
tions.

We utilize the idea of Tomlinson–Harashima precoding and replicate the constella-
tion along the entire length of the real line to obtain an infinite extended constellation,
as shown in Fig. 3b for 4-PAM case. Each of the M information symbols bi now
corresponds to the equivalence class of points (2nM + bi )A, n ∈ Z is an integer, in
the replicated constellation points instead of a single point.
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To minimize distortionDi = u2i to the i th host vector, we choose ui with minimum
absolute value such that ui + zi is a representation point in its equivalence class
(2nM + bi )A,

min|ui |, s. t. ui + zi = (2nM + bi )A, n ∈ Z. (28)

To solve (28), we need to first find the representation point in its equivalence class
which is closest to the interference, that is, (2n′M +bi )A, where n′ = round( zi−bi A

2AM ).
To let ui+zi = (2n′M+bi )A, we then find the optimal ui by calculating the difference

ui = (2n′M + bi )A − zi , n′ = round

(
zi − bi A

2AM

)
. (29)

The maximum-likelihood (ML) detector of embedded symbols can be mathemati-
cally expressed in a form of

b̂i = arg min
b∈AM

|ri − (2nM + b)A|, for any integer n. (30)

Or equivalently, recovery can be performed by finding the point n′′A in the infinite
replicated constellation that is closest to received signal ri :

n′′ = round ((ri/A + 1)/2) 2 − 1 (31)

and then decoding n′′ to the corresponding symbol in the alphabet set AM:

b̂i = mod
(
n′′ + M − 1, 2M

) − (M − 1). (32)

The M-PAM SS embedding with precoding has just slightly more complexity on
encoder and decoder than conventional SS embedding. But the decoder needs the
knowledge of the modulation separation A which can be predesigned with the estima-
tion of external noise intensity (i.e., the variance σ 2

n ) and preshared to both encoder
and decoder. If σ 2

n changes significantly, we can adaptively increase A to reduce the
BER, or decrease A to reduce the distortion of image.While such adaptive scheme can
provide better BER distortion performance, it requires updating amplitude A between
encoder and decoder via a secure channel which may cost much more complexity.

The SER of the SS embedding with precoding is

SER = 2Q

(
A

σn

)
(33)

, and the BER with Gray-coded symbol is

BER = SER

log2M
= 2

log2M
Q

(
A

σn

)
. (34)
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Therefore, given a target BER, the required constellation separation is

A ≥ σnQ
−1

(
BER

2
log2M

)
. (35)

Unlike the precancelation with regular modulation scheme in (23), the distortion
induced by SS embedding with precoding is

Di = u2i ≤ M2A2 (36)

which does not grow unbounded with the interference zi . If interference zi is assumed
having uniform distribution, then the MS distortion to the host is

D = E{u2i } = 1

3
M2A2. (37)

Generally, the distribution of interference zi from the host is not uniform but can be
modeled as generalized Gaussian or Laplace distribution with zero mean and variance
σ 2
z > 0. If σ 2

z = 0 which means no interference presents, from (25) the distortion
is D = ( 1

3M
2 − 1

3

)
A2; if σ 2

z → ∞ which means the distribution of interference
approaches to uniform, thenD = 1

3M
2A2. Thus, with a given A, the induced distortion

has upper and lower bounds as

(
1

3
M2 − 1

3

)
A2 ≤ D ≤ 1

3
M2A2. (38)

The closed-form relationship between distortion D and modulation separation A is
too complicated for practical use, even host is modeled as generalized Gaussian or
Laplace distribution. Therefore, we introduce instead following simple approximated
expression

D =
(
1

3
M2 − 1

3
e− σz

4

)
A2. (39)

To validate this approximation, we carried out an experiment in Fig. 4 over more
than 1,500 8-bit gray-scale photographic images ([27] and [33] combined). With a
modulation separation A varying from 0.5 to 5, the true distortion obtained empirically
and the distortion predicted by (39) are shown in Fig. 4 for both arbitrary carrier
and optimal carrier cases. It can be concluded that the approximated form (39) can
accurately illustrate the relationship between distortion D and modulation separation
A. Given a distortion budget D, we can use (39) to obtain an optimal constellation
separation

A =
√

3D
M2 − e− σz

4
(40)
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images [27,33], 8 × 8 block partition, L = 63)

such that the induced distortion would not exceed the budget, and the probability of
error is minimized at

BER = 2

log2M
Q

⎛

⎜⎝

√√√√
3D(

M2 − e− σz
4

)
σ 2
n

⎞

⎟⎠ . (41)

When 2-PAM is used and the variance of interference σ 2
z is small enough (close

to zero), the BER for SS embedding with precoding in (41) can be approximated

as BER = 2Q
(√D

σn

)
. But for the precancelation with regular modulation (23) or SS

embeddingon linearly transformedhost (11), the error probability canbe approximated

as BER = Q
(√D

σn

)
, which is smaller by a factor of 1/2. The probability of error of

SS embedding with precoding is larger because there is an additional possibility of
confusion across replicas. However, the variance of interference is in general large
enough such that SS embedding with precoding is superior in most cases. Even when
small interference variance occurs (generally onlywhen the optimal carrier is adopted),
the performance degradation due to precoding is very small and negligible.

We evaluate the performance of six different embedding schemes: (i) SS embedding
in (2) with an arbitrary carrier sarb, (ii) SS embedding in (2) with an optimal carrier
sopt in (7), (iii) SS embedding on linearly transformed host in (11) with an arbitrary
carrier sarb and an optimal transform parameter copt in (14), (iv) SS embedding on
linearly transformed host in (11) with an optimal carrier sopt in (17) and an optimal
transform parameter copt in (14), (v) precoded SS embedding with an arbitrary carrier
sarb, and (vi) precoded SS embedding with an optimal carrier sopt in (7).
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4 Experimental Studies

To carry out an experimental study of the developments presented in the previous
sections, we consider the familiar gray-scale 512 × 512 “Baboon” image as a host
example. We perform 8 × 8 block DCT embedding over all 63 bins except the dc
coefficient. For the sake of generality, we also incorporate white Gaussian noise of
variance σ 2

n = 3dB.
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Fig. 8 BER versus per-block distortion, 8-PAM, (512×512 Baboon, 8×8 block partition, 12,288 bits are
embedded, L = 63, σ 2

n = 3dB)

Figure 5 shows the recovery BER for SS embedding with 2-PAM as a function of
the MS per-block distortion.2 Totally, 4096 bits are embedded in the Baboon image.
It is demonstrated that the use of proposed symbol-by-symbol precoding can sig-
nificantly improve the BER performance over traditional SS embedding schemes as
well as recently developed SS embedding in transform domain host data with optimal

2 With block MS distortion D, the peak signal-to-noise ratio (PSNR) of the image due to embedding can
be calculated by PSNR = 20log10(255) − 10log10(D/64). The embedding (watermarking) distortion to
attack noise ratio (WNR) measure can also be easily obtained by WNR = 10log10(D/64/σ 2

n ).
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Fig. 10 BER versus per-block distortion, 2-PAM, (average findings over a data set of more than 1500
images [27,33], 8 × 8 block partition, L = 63, σ 2
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projection-like linear operator. It can also be observed that for precoded SS embed-
ding, the recovery performance gap between arbitrary carrier and optimal carrier is
very small while optimal carrier can significantly improve the recovery performance
than arbitrary carrier for other SS embedding schemes. This implies that the perfor-
mance of SS embedding with precoding is not notably affected by the selection of
carrier.

In Fig. 6, we repeat the same experiment for gray-scale 512 × 512 “Boat” image.
We notice that, when optimal carrier is used, SS embedding with precoding is slightly
worse than SS embedding on linear transformed host. This is because that, as we
discussed in the previous section, the variance of interference σ 2

z is very low for Boat
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Fig. 12 BER versus per-block distortion, 8-PAM, (average findings over a data set of more than 1500
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image when optimal carrier is adopted. But the performance gap is negligible, and SS
embedding with precoding is still worth using.

In Figs. 7 and 8, we repeat the same experiment as Fig. 5 for 4-PAM and 8-PAM
with Gray coding, respectively. The sizes of embedded data for these two experi-
ments are 8192 and 12,288 bits, respectively. We notice that, when modulation order
increases, (sopt, copt) embedding has performance close to the precoding approach.
Yet, we should emphasize that the performance of precoding is almost independent of
the carrier, i.e., as we can found from the figures, arbitrary carrier and optimal carrier
have similar performance for the THP. This means that precoding scheme can simply
use a preshared and fixed carrier for any image, and the performance can be always
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maintained at a satisfactory level. However, to achieve such good performance, the
(sopt, copt) embedding needs to re-calculate the optimal carrier for each image and
sends it to the receiver via a secure channel which is complex and may not always
be available. Therefore, SS embedding with precoding is always suggested due to
its simplicity (no need of a secure channel), superior performance, and carrier inde-
pendence. To further illustrate the recovery performances for different modulation
orders, in Fig. 9, we show the performance curves of precoded SS embedding using
2-PAM, 4-PAM, and 8-PAM. For the comparison purpose, we also include the famous
improved spread-spectrum (ISS) embedding [22] and recently proposed correlation-
aware improved spread-spectrum (CAISS) embedding [34]. We can found that the
SS embedding with precoding has much better recovery performance than ISS and
CAISS.

To address the need for experimental verification of highest credibility, now we
examine the average performance of the proposed precoded SS embedding algorithm
over a large image database. The experimental image data set consists of more than
1500 8-bit gray-scale photographic images ([27] and [33] combined) which have great
variety (e.g., outdoor/indoor, daylight/night, and natural/man-made) and different
sizes. Recovery performance plots are given in Figs. 10, 11 and 12. Similar conclusion
can be drawn as in previous individual image host experimentations. Finally, in Fig.
13, we show the average BER performance of THP with 2-PAM, 4-PAM, and 8-PAM
and also include the SS embedding algorithms in [22] and [34]. We can conclude that
the SS embedding with TH precoding is superior to other counterparts.

5 Conclusion

In this work, we focused on additive M-PAM spread-spectrum (SS) data embedding
in transform domain host data. We utilized the idea of Tomlinson–Harashima precod-
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ing (THP) which is a practical dirty paper coding implementation for communication
systems. A symbol-by-symbol precoding approach was designed for SS embedding to
minimize BER with any given distortion budget, and conversely minimize the distor-
tion at any target BER. Experimental studies demonstrated that this symbol-by-symbol
precoded SS embedding approach can significantly improve the BERperformance and
is superior over other conventional SS embedding schemes.
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Appendix

Proof of Proposition 2 With SS embedding signal (11), the output SINR of MF is

SINR = E{‖Abi‖2}
E

{‖sT ((IL − cssT )xi + n)‖2} (42)

=
3

M2−1
A2

sT
(
(IL − cssT )Rx(IL − cssT ) + σ 2

n I
)
s

=
3

M2−1
A2

sTRxs − 2csTRxs + c2sTRxs + σ 2
n

=
3

M2−1
A2

α − 2cα + c2α + σ 2
n

(43)

where we define α � sTRxs. By applyingD = 3
M2−1

A2+c2sTRxs = 3
M2−1

A2+c2α
into (43), we obtain

SINR = D − c2α

α − 2cα + c2α + σ 2 (44)

By direct differentiation of the (44) with respect to c and root selection, we obtain

copt = α+σ 2
n +D−√

(α+σ 2
n +D)2−4αD

2α in (14). With optimal transform parameter copt,
the optimal amplitude Aopt and the maximum SINR can be easily calculated.

The SINR in (44) is a monotonically decreasing function of α ≥ 0. Therefore, the
optimal carrier s, whichminimizes α � sTRxs, is the eigenvector ofRx withminimum
eigenvalue

sopt = qL . (45)

With this optimal carrier, the identity of match filter and maximum SINR filter has be
proved in Proposition 3 in [12]. ��
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