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a b s t r a c t 

The task of source camera identification is devoted to linking an image to the source camera model and 

plays a significant role in forensics. Nevertheless, with the ongoing development of new camera models, 

it is difficult to keep a model database up to date, giving rise to the open-set problem. To deal with this 

problem, we propose a novel approach based on the envelope of data clustering optimization (EDCO). 

The new EDCO scheme can identify the camera model regardless of whether or not it is included in the 

database. The experimental results prove that EDCO efficiently separates unknown source images from 

known source images and links the query image identified as known with the source camera model. 

When the dataset is expanded with the new camera model, EDCO only needs to train the new model 

instead of retraining with all models together, which greatly improves the scalability. Compared with 

the state of the art, our method can effectively distinguish between images from known and unknown 

camera models, even in extreme cases. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

In the era of digital image ubiquity, determining how to accu- 

ately identify the source of a digital image has become a hot topic 

n the field of information security ( González and Woods, 1981 ). 

ource camera identification plays an important role in improving 

he security of digital images, resolving copyright disputes, pre- 

enting false publicity and combating cyber crimes, especially, it 

an provide favourable technical support for judicial authentication 

nd criminal investigations such as child pornography and insur- 

nce claims ( Li, 2010 ). 

For conventional closed-set source camera identification ap- 

roaches ( Ahmed et al., 2019; Bayram et al., 2005; Kang et al., 

012; Li et al., 2018; Yang et al., 2019 ), the test image is usu-

lly generated by a known model (included in our dataset). How- 

ver, new models are joining market rapidly ( Schweighofer et al., 

008 ), and it is challenging to keep the dataset up to date. 

ince source camera identification is basically a classification prob- 

em ( Choi et al., 2006; Freire-Obregón et al., 2019; Lekshmi and 

aithiyanathan, 2018; Zheng et al., 2020 ), lack of new models in an 

ut-of-date dataset may cause mis-classification; that is, the im- 
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ges captured by new models are classified as some old model. 

herefore, identifying unknown image sources has become one of 

he most critical challenges in current source camera identification 

 Bayar and Stamm, 2018 ). 

The consideration of open-set issues in the field of cam- 

ra source identification can be first traced back to 2009 

ang et al. (2009) , a source camera identification method based 

n the combination of OC-SVM (one-class support vector machine) 

nd MC-SVM (multi-class support vector machine) was proposed, 

hich considered the camera model problem of unknown sources 

or the first time. Although Huang et al. (2015) distinguish be- 

ween known and unknown models, the recognition accuracy of 

nown models is very low when there are few known models. In 

his paper, we propose a novel approach based on the envelope 

f data clustering optimization (EDCO). For our EDCO scheme, we 

echaracterize the classification boundary of the data by cluster- 

ng, effectively solving the problem of low recall rates in the case 

hen there are few known models. Mayer et al. (2020) ; Mayer and 

tamm (2018) address similar issues but with a much more limited 

cope. The authors can only determine the ”siblingship” between 

wo input images, that is, whether the two images originate from 

he same source camera model. Additionally, their methods require 

 relatively large training set and lack efficacy. When the test im- 

ges are captured by models including unknown models, our EDCO 

cheme effectively distinguishes the known images from the un- 

nown images and determines which model the known image be- 

ongs to. 
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Fig. 1. Three levels of identification granularity. 
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Fig. 2. Different camera model identification problem formulations. 
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The key contributions of this paper are as follows: 

• We propose the EDCO scheme to address the open-set prob- 

lem of source camera identification, which can effectively dis- 

tinguish between the images from known and unknown camera 

models. 

• To overcome the problem of the low recall rate of known cam- 

era models in bad situation (there is quantity gap between 

known models and unknown models), the EDCO scheme de- 

scribes the distribution boundary of a camera model in the fea- 

ture space in a more detailed manner based on the envelope of 

data clustering optimization. 

• When the dataset is expanded with the new camera model, 

EDCO only needs to train the new model instead of retraining 

with all models in the training set together, which is more scal- 

able on the ”future” camera models and overcomes the time- 

consuming problem in the era of rapid development of camera 

models. 

• We prove the effectiveness of the EDCO scheme through a large 

number of experiments. The obtained results demonstrate that 

the proposed EDCO scheme significantly outperforms the state- 

of-the-art methods in terms of model extensibility and robust- 

ness. 

The rest of the paper is organized as follows. Section 2 for- 

ally introduces the representative studies related to our work. 

ection 3 describes our proposed method in detail. Comprehensive 

xperiments are carried out and comparisons of related works are 

resented in Section 4 to verify the superiority of the proposed 

ethod. Finally, we conclude the paper in Section 5 . 

. Related work 

In this section, we briefly introduce the traditional closed-set 

ource camera identification and the open-set problem. 

.1. Source camera identification 

As a challenging branch of the digital forensics domain, source 

amera identification aims to determine the original sources of 

igital images. On the one hand, depending on the different cases 

nd the available reference information, source camera identifica- 

ion may be approached at three levels ( Wang et al., 2009 ) of iden-

ification granularity, as illustrated in Fig. 1 . 

1. Type-based: electronic scanner, digital camera, computer gener- 

ated, etc.; 

2. Model-based: Canon_Ixus55, Nikon_D70, Fuji_J50, etc.; 

3. Device-based: Nikon_D70_1, Nikon_D70_2, Nikon_D70_3, etc. 

On the other hand, source camera identification can generally 

e divided into two groups by different forensics points: active 

ource camera identification and blind source camera identifica- 

ion. This work is a model-based approach and focuses on blind 
2 
ource camera identification, which does not need to embed the 

ource information. 

Since different camera manufacturers and even different cam- 

ra models from the same manufacturer may have various colour 

lter array configuration algorithms and colour transformations, 

harrazi et al. (2004) propose a total of 34 features to capture 

he differences in the underlying colour characteristics for differ- 

nt camera models. Bayram et al. (2005) believe that the images 

aptured by digital cameras are greatly affected by the colour fil- 

er array (CFA) and demosaicing algorithms. The authors propose 

 method based on a proprietary interpolation algorithm trajectory 

o identify the source camera model. A unified grey-level invari- 

nt local binary pattern (LBP) is used to capture features or arte- 

acts generated by the image processing algorithm implemented 

nside the camera in Xu and Shi (2012) . Recent work in digi- 

al image forensics suggests that convolutional neural networks 

CNNs) ( Bayar and Stamm, 2017; Bondi et al., 2017a; Rafi et al., 

020; Tuama et al., 2016 ) can be used to learn the camera’s fea-

ures. Huang et al. (2018) design a new image source identification 

cheme which can capture both the feature coupling and model 

oupling relationships. Liu et al. (2019) propose a new Anti-noise 

mage Source Identification (AISI) method to deal with noisy sam- 

les of image source identification. In addition, the problem of lim- 

ted labels classification is also an important problem in source 

amera identification. Sameer and Naskar (2020) use a few shot 

earning technique known as deep siamese network to address the 

roblem of performing accurate source camera identification, with 

 limited set of labelled training samples, per camera model. 

.2. Camera model identification in the open set 

When a traditional forensic method is used to link an image 

o the source camera model, images from an unknown model may 

e misclassified into a known camera model in the closed-set, as 

epicted in Fig. 2 (a). For an open-set camera model identification 

s shown in Fig. 2 (b), the classifier is permitted to reject an image

rom an unknown model instead of distributing an incorrect label 

rom the known dataset randomly. 

Few works have addressed the problem of unknown models in 

ource camera identification. Wang et al. (2009) propose a com- 

ined classification framework of the one-class SVM and the multi- 

lass SVM. The one-class SVM is trained for each model to deter- 

ine whether an image is from the known model. If an image does 

ot belong to any known model, it will be rejected as an unknown 

odel. In contrast, the accepted images will be input into the 
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Fig. 3. The workflow of Envelope of Data Clustering Optimization(EDCO). Each 

small dotted box represents a known camera model from the training set, which 

is an envelope formed by the fusion of several hyperspheres. By combining all the 

small dotted boxes in the training set, the EDCO scheme can be obtained. If the test 

image is rejected by all hypersurface envelopes, it will be judged as an unknown 

source image (as shown in the dotted line); if the image is accepted by more than 

one hypersurface envelope (as shown in the solid line), it will need to be voted on 

to determine which camera is the known source. 

3

s

i

k

(

a

h

b

p

s

d

f

p

p

fi

a  

p

f

t

w

T

t

i

A

t

d

s

p

w

a

�

�  

c

ulti-class SVM employed to determine which known model this 

mage is from. Costa et al. (2012, 2014) propose a method based on 

ecision boundary sculpting (DBC). The method first considers the 

mages of known models as positive samples and considers images 

f other known models as negative samples. Then, by adjusting the 

ecision boundary to minimize false positive matches in the future, 

he binary SVM is trained to distinguish between positive sam- 

les and negative samples. Due to the lack of information about 

nknown models, the decision boundary of DBC may not be well 

haped in actual situations. Huang et al. (2015) propose the source 

amera identification with unknown models (SCIU) scheme to ad- 

ress the open-set problem. The authors first use a KNN-based un- 

nown detection method to identify some sample images of un- 

nown models from the unlabelled training dataset. Then, they 

mploy a self-training procedure to extract more sample images of 

nknown models from the unlabelled training dataset. As a result 

f the algorithm characteristics of KNN, the prediction accuracy of 

he known model is low when the sample is unbalanced, and the 

omputational complexity and spatial complexity are also high. 

With the rapid progress in computer graphics and computer 

ision, in 2017, Bondi et al. (2017b) demonstrated the possibility 

f using CNNs in camera model identification for the first time. 

ayer and Stamm Bayar and Stamm (2018) propose a threshold- 

ng protocol over the maximum confidence score to identify un- 

nown cameras. They first use a constrained CNN to extract cam- 

ra model identification features and then map the learned deep 

eatures onto confidence scores to indicate whether the two image 

atches are captured by the same or different camera models. If 

he confidence score is lower than the thresholding, the query im- 

ge will be identified as unknown. Mayer and Stamm (2018) pro- 

ose a system to compare the source camera model of two image 

atches, even when the camera models are unknown to the in- 

estigator. First, the authors train a CNN-based feature extractor to 

utput general and advanced features, encoding the source camera 

odel information of the image patch. In addition, they learn a 

imilarity measure that maps these feature pairs to the scores as- 

ociated with each known camera model. Finally, the score is used 

s a criterion for judging whether two images belong to the same 

ource camera model. However, the authors can only determine 

he ”siblingship” between two input images to identify whether 

hey originate from the same camera model or not. Additionally, 

heir methods require a relatively large training set and are ineffi- 

ient (as this method can only test the relationship between two 

mages at a time instead of classifying all images in the test set). 

n Júnior et al. (2019) , the authors formalize and evaluate open- 

et training protocols applied to open-set classification methods 

uring training for proper estimate of parameters for the open- 

et scenario and carry out large-scale testing on the open-set cam- 

ra model identification problem considering independent datasets 

nd several algorithms. In Mayer et al. (2020) , Mayer et al. design a

ideo-specific camera model verification system comprising a deep 

eature extractor, similarity network, and video-level fusion system. 

ased on the similarity network, the method can classify whether 

he two query videos were captured by the same camera model. 

. Proposed approach 

In this section, we propose a machine learning model named 

nvelope of Data Clustering Optimization(EDCO) for unknown 

odel detection in source camera identification. There are two 

ain operational steps in the proposed model: (i) Model train- 

ng with positive samples and (ii) Unknown model separation and 

nown model linking. Fig. 3 shows the overall workflow of the pro- 

osed method. The implementation process is described in detail 

n the following subsections. 
3 
.1. Model training with positive samples 

The first step in our approach is to train models with positive 

amples (images from one known source camera model), such that 

t allows the classifier to identify the samples associated with un- 

nown models during testing. 

As a new single-class classifier, support vector data description 

SVDD) Liu et al. (2012) ; Tax and Duin (2004) simulates the bound- 

ry of target data through the minimum volume hypersphere and 

as been widely used in anomaly detection. However, the distri- 

ution of the samples in the eigenspace is often complex and un- 

redictable, and SVDD in some cases does not perform well in de- 

cribing the boundaries of positive samples, particularly when the 

istinction between classes is not large in the high-dimensional 

eature space. Therefore, our algorithm proposes to divide the sam- 

les in each camera model by clustering. 

Fig. 4 introduces the basic principle of the algorithm in a sim- 

le schematic where the red bounding lines represent misclassi- 

ed samples. A sample distribution in the feature space is given 

s shown in Fig. 4 (a). As depicted in Fig. 4 (b), some positive sam-

les may be misclassified into negative classes when the hypersur- 

ace radius is too small. However, when the hypersurface radius is 

oo large, the negative samples from the unknown models will be 

rongly identified as the positive samples, as shown in Fig. 4 (c). 

herefore, to enable the model to accept the positive samples from 

he known camera model to the maximum extent while reject- 

ng the negative samples from the unknown camera models, our 

lgorithm 1 focuses on the refinement of the positive envelope in 

he feature space. As shown in Fig. 4 (d), the original samples are 

ivided into K separate subsets by the clustering method ( Fig. 4 (d) 

hows the case of K), and the hypersurface envelope of each sam- 

le is described. In this case, the number of misclassified samples 

ill decrease with envelope optimization. 

The detailed training process is described below. First, given 

 labelled training dataset T R with N classes (subsets), each class 

(η) is associated with a camera model indexed by η. That is, 

(η) ⊂ T R , ∀ η ∈ (1 , 2 , . . . , N) and η stands for the label of each

amera model. Next, the colour filter array (CFA) ( Bayram et al., 
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Fig. 4. Analysis of problems in the training of positive samples. Purple triangles represent positive samples (known camera model), and graphics with other colours represent 

negative samples (unknown camera models). 

Algorithm 1: Model Training with Positive Samples. 

Input : Taining images: x 
ηk 
i 

, i = 1 , 2 , . . . , n 

The number of subclasses: K 

Output : Hypersphere models 

Initialize centres: Randomly selected 

Initialize Iteration = 0 

while 1 do 

for each x 
ηk 
i 

do 

Euclidean distance( x 
ηk 
i 

,centres) 

Assign x 
ηk 
i 

to the closest subclass 

New centres: Update centres using the sample mean of 

each subclass 

if New centres ! = centres then 

Iteration ← Iteration+1 

centres = New centres 

Repeat 

else 
Stop Iteration 

Break and return K subclasses 

for each subclass do 

The formula 1–4 

return K hypersphere models 

2

i

c

4

c
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p
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w
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s
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s  

S
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p

d

d
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a

m  

p

d

d

w
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e

p

005 ) is used to extract features from the images in the train- 

ng set; this is a widely used interpolation algorithm in source 

amera identification. By applying CFA interpolation, we obtain the 

80-dimensional features ( Wang et al., 2018 ) of images from N

lasses in T . Then, in the 480-dimension feature space, K-means 
R 

4 
 García et al., 2018 ) clustering is carried out for the positive sam- 

les, as described in detail in Algorithm 1 . 

For each class �(η) , we divide the data into K subclasses by 

pplying clustering techniques and name each subclass as γ (ηk ) , 

here ηk is a virtual label assigned to γ (ηk ) and distinguished by 

ubscripts k . That is, γ (ηk ) ⊂ �(η) , ∀ k ∈ (1 , 2 , . . . , K) . Then,for each

ubclass γ (ηk ) , the technique of SVDD is applied. Suppose each 

mage is represented by x 
ηk 
i 

, where n is the number of positive 

amples (images) in γ (ηk ) . That is, x 
ηk 
i 

∈ γ (ηk ) , ∀ i ∈ (1 , 2 , . . . , n ) .

uppose x 
ηk 
i 

satisfies the nonlinear transformation �: x 
ηk 
i 

→ F . 

herefore, SVDD can be described by the following optimization 

roblem: 

ispl aystyl e min 

a ,R,ξ
R 

2 + C 
∑ 

i 

ξi , 

ispl aystyl e s.t. 
∥∥�(x 

ηk 

i 
) − a 

∥∥2 ≤ R 

2 + ξi , ξi ≥ 0 , 

(1) 

here a is the centre and R is the radius of the hypersphere (the 

ormula will be shown later in Eq. 3 ). ξi is the relaxation factor 

nd C represents a penalty parameter that balances the volume 

nd error fraction of the hypersphere. By introducing Lagrangian 

ultipliers by Liu et al. (2012) ; Tax and Duin (2004) , the original

roblem can be transformed into a dual problem: 

ispl aystyl e min 

αi 

n ∑ 

i =1 

n ∑ 

j=1 

αi α j K 

(
x 
ηk 

i 
, x 

ηk 

j 

)
−

n ∑ 

i =1 

αi K 

(
x 
ηk 

i 
, x 

ηk 

i 

)
, 

ispl aystyl e s.t. 0 ≤ αi ≤ C, 
n ∑ 

i =1 

αi = 1 , 

(2) 

here αi is the Lagrangian coefficient for x 
ηk 
i 

. K 

(
x 
ηk 
i 

, x 
ηk 
i 

)
is the 

ernel function, which is equivalent to the inner product of the 

igenspace. The corresponding Lagrangian coefficients of all sam- 

les can be obtained by solving the dual problem. In all training 
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amples, the samples for which the Lagrangian coefficients satisfy 

 ≤ αi ≤ C are called support vectors. It is assumed that the sam- 

le set composed of support vectors in the training dataset is V . By 

aking advantage of the kernel function, the boundaries mapped to 

he input space are no longer limited to spherical distributions. The 

entre and radius of a hypersphere are formulated as follows: 

 ηk 
= 

n ∑ 

i =1 

αi �(x 
ηk 

i 
) , (3) 

 ηk 
= 

[ 

K 

(
x 
ηk 
v , x 

ηk 
v 

)
− 2 

n ∑ 

i =1 

αi K 

(
x 
ηk 
v , x 

ηk 

i 

)

+ 

n ∑ 

i =1 

n ∑ 

j=1 

αi α j K 

(
x 
ηk 

i 
, x 

ηk 

j 

)] 

1 
2 

, 

(4) 

here x 
ηk 
i 

∈ V . The data description of the positive training sam- 

les can be obtained by the centre and radius of the hypersphere. 

To summarize, the proposed EDCO can effectively reject the un- 

nown samples even if the training set has only one known cam- 

ra model (extreme cases). Compared to other existing methods, 

ur EDCO is more scalable on the ”future” camera models; that is, 

nce the dataset needs to add some new camera models, it is only 

ecessary to train for each new camera model instead of retraining 

ll the known camera models in the dataset. 

.2. Unknown model separation and known model linking 

For the second step, we aim to (i) identify and separate images 

rom known/unknown source models and (ii) link the images from 

he known models to the matched models. 

First, for the test images, the following is given: an unlabelled 

est dataset T E that contains images from known and unknown 

amera models, hypersphere models M ηk 
that are obtained from 

lgorithm 1 , and ηk as the label of one known source cam- 

ra model in the training dataset. Next, the CFA interpolation 

lgorithm ( Wang et al., 2018 ) is used to extract features from 

he images in T E . According to SVDD Liu et al. (2012) ; Tax and

uin (2004) , for each hypersphere, the distance from x test to the 

entre of the hypersphere is: 

 ηk 
= 

[ 

K ( x test , x test ) − 2 

n ∑ 

i =1 

αi K 

(
x test , x 

ηk 

i 

)

+ 

n ∑ 

i =1 

n ∑ 

j=1 

αi α j K 

(
x 
ηk 

i 
, x 

ηk 

j 

)] 

1 
2 

. 

(5) 

According to the formula 4 , if d ηk 
≤ R ηk 

(the test sample is on 

he hypersphere or inside of the hypersphere), it will be judged as 

 normal sample from the known camera model; otherwise, it will 

e judged as a sample from the unknown camera models. Contin- 

ing with Algorithm 1 , we define: 

ˆ 
 ηk 

= d ηk 
/ R ηk 

, (6) 

nd we obtain the following decision rules: 

1. For all hypersphere models M ηk 
that are generated by 

Algorithm 1 , if all the ˆ d ηk 
rest content with 

ˆ d ηk 
> 1 , we believe

that the test image is from an unknown camera model outside 

our dataset. Then, we place the test image into the set of un- 

known source ( S u ). 
2. If any ˆ d ηk 

≤ 1 , the test image is judged to belong to the set of

known source ( S k ). Next, we vote on images in S k to determine

their corresponding camera models. 
5 
3. If the test image is accepted by only one hypersphere or some 

hyperspheres from the same camera model (hyperspheres with 

the same real label η but belonging to different subclasses, in- 

cluding η1 , η2 , η3 , etc.), we believe that it belongs to the class 

corresponding to the hypersphere. 

4. If the test image is accepted by more than one hypersphere 

from different camera models (hyperspheres with different real 

labels η), it will be assigned to the class that has the most ac- 

ceptant hyperspheres with the same real label η. If the num- 

ber of accepting hyperspheres with the same real label η is the 

same, we will select the hypersphere where min ( ˆ d ηk 
) is and as- 

sign the label to the test image. 

By applying the distance judgement rule, we can classify images 

rom S k and associate the query image identified as known with 

he source camera model. 

. Experiments and results 

In this section, we conduct extensive experiments to evaluate 

he proposed method on the source camera model identification 

n an open set. The detailed experimental setup and experimental 

esults are described below. 

.1. Settings 

In this paper, we use the Dresden image dataset ( Gloe and 

öhme, 2010 ), whose images are captured by different in- 

oor/outdoor cameras with various camera settings; this dataset 

s considered a benchmark dataset for source camera identification 

nd provides almost 17,0 0 0 images from 74 cameras ranging across 

7 different models. 

To eliminate the influence of different individuals of the same 

amera model, the samples in the training, validation and test sets 

f the same camera model are from different individuals. In our 

xperiments, we first randomly select 100 images from each cam- 

ra model in the Dresden image dataset and collect them as the 

est samples. Then, the rest of the images that we do not select in 

he first step will be divided into the training set and validation set 

t a 7:3 ratio. The detailed information about the camera models 

s shown in Table 1 . Compared with the case in which the samples

n the training and test set are all from the same individual of each 

amera model, this approach for dataset division is more difficult 

ut can ensure that the used samples are mutually exclusive. 

In our experiments, we extract CFA features ( Wang et al., 2018 ) 

n all samples because a number of previous studies have reported 

hat this method is effective and has been widely used in tradi- 

ional forensic methods ( Alattar et al., 2015; Gao et al., 2012; Liu 

t al., 2018 ). Because the image size of the 27 camera models is 

ifferent, we extract the CFA from the 256 × 256 subimage cropped 

rom the centre. We conduct all our experiments in MATLAB on a 

PU with 8 processors and 8 GB RAM. 

Our proposed EDCO method is compared with the following 

ource camera model identification methods on the open set in the 

xperiments: 

1. Combined classification framework prior to applying data clus- 

tering (CCF_B) ( Wang et al., 2009 ); 

2. Source camera identification with unknown models (SCIU) 

( Huang et al., 2015 ); 

3. Mayer et al. similarity ( Mayer et al., 2020; Mayer and Stamm, 

2018 ); 

In order to illustrate the effectiveness of the proposed algorithm 

n data clustering preprocessing, two self-comparison experiments 

re also set in this paper: 
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Table 1 

Camera models used in the experiments. 

No. Camera Model Abbr. Number 

1 Kodak_M1063 K1 2391 

2 Olympus_mju1050SW O1 1040 

3 Praktica_DCZ5.9 PR1 1019 

4 Panasonic_DMCFZ50 PA1 931 

5 Casio_EXZ150 CA1 925 

6 Nikon_CoolPixS710 N1 925 

7 Ricoh_GX100 R1 854 

8 Nikon_D200 N2 752 

9 Sony_DSCT77 SO1 725 

10 Samsung_L74wide S1 686 

11 Samsung_NV15 S2 645 

12 Pentax_OptioA40 P1 638 

13 FujiFilm_FinePixJ50 F1 630 

14 Rollei_RCP7325XS RO1 589 

15 Canon_Ixus70 C1 567 

16 Sony_DSCH50 SO2 541 

17 Sony_DSCW170 SO3 405 

18 Agfa_Sensor530s A1 372 

19 Nikon_D70 N3 369 

20 Nikon_D70s N4 367 

21 Agfa_DC830i A2 363 

22 Agfa_DC733s A3 281 

23 Canon_Ixus55 C2 224 

24 Pentax_OptioW60 P2 192 

25 Canon_PowerShotA640 C3 188 

26 Agfa_Sensor505x A4 172 

27 Agfa_DC504 A5 169 

d

p

i

4

u

Table 2 

Overall accuracy (%) performance comparison of the approach. 

Methods \ Metrics KACC UACC OACC 

CCF_A 54.2 92.6 91.3 

CCF_B 50.7 89.8 88.4 

SCIU 28.9 96.5 94.4 

EDCO_B 69.5 96.3 95.3 

EDCO 83.6 96.7 96.2 
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1. CCF_A: First, use the clustering algorithm to cluster the camera 

models of each original category into K subcategories, and then 

applied Combined classification framework(CCF_B) ( Wang et al., 

2009 ) to gets the decision model; 

2. EDCO_B: Instead of using data clustering preprocessing to sub- 

divide the camera models, the decision models are constructed 

by using hypersphere envelope according to the features of 

each camera model. 

All the above methods are implemented for the Dresden image 

atabase. In addition, CCF_B and EDCO_B are compared in the ex- 

eriments to demonstrate the effectiveness of the first algorithm 

n our proposed EDCO method. 

.2. Evaluation metrics 

To evaluate the performance of the proposed EDCO method, we 

se the following metrics ( Huang et al., 2015 ): 

1. The known camera model accuracy (KACC) is the ratio of the 

number of the correctly identified images in the known camera 

models to the total number of images from the known cam- 

era models and is used to evaluate the ability of our proposed 

EDCO method to recall the known source images. Specifically, 

we define the number of correctly identified known source im- 

ages as NCK and the number of the images identified from 

known models as NK. 

KACC = NCK / NK (7) 

2. The unknown camera model accuracy (UACC) is the ratio of the 

number of correctly identified images in the unknown camera 

models to the total number of images from the unknown cam- 

era models and reflects the ability of known - unknown separa- 

tion of our proposed EDCO method. Specifically, we define the 

number of correctly identified unknown source images as NCU 

and the number of images identified from unknown models as 

NU. 
UACC = NCU / NU (8) t

6 
3. The overall camera model accuracy (OACC) is the ratio of the 

total number of correctly identified images to the total num- 

ber of images and is used to measure the overall identification 

accuracy. 

OACC = 

No. of correctly identified images 

No. of all images identified 

(9) 

.3. Results and discussion 

.3.1. Study of EDCO 

Experiment I: To test and evaluate our proposed method, we 

esign experiments based on the Dresden dataset as follows. Each 

ime, we pick a model from dataset (which is treated as the 

known” model) for training our classifier. Then, we use the re- 

aining 26 other models in the dataset as ”unknown” models. 

he KACC, UACC, and OACC values obtained using EDCO and other 

ethods are given in Figs. 5 –7 for comparison. 

An examination of the experiment results presented in 

ig. 5 shows that EDCO is significantly superior to the other meth- 

ds. The EDCO_B method is the second best, with an average ac- 

uracy rate 18.0% lower than that of EDCO. The SCIU method has 

he worst stability and the lowest accuracy on average, as reflected 

y the fact that the KACC of the SCIU method can reach 100.0% 

hen K1 is used as the known source camera model, while the 

ACC of the SCIU method reaches only 8.0% when A4 is used as 

he known source camera model. The performance of the CCF_A 

ethod is generally better than that of the CCF_B method. Sim- 

larly, the EDCO method is also superior to the EDCO_B method, 

hich is attributed to the application of Algorithm 1 that de- 

cribes the hypersurface envelope in more detail. However, CCF_B 

nd EDCO_B need to exclude the possible influence of the camera 

odel from unknown sources, so the hypersurface envelope radius 

hould be as small as possible, resulting in the drawback of a rel- 

tively low KACC. Generally, the EDCO method has a strong recall 

apability for the known source camera models, with an average 

ACC of 83.6%. The KACC values of all methods are very low on N4 

nd N5 because these two models of cameras have negligible dif- 

erences in brand and hardware structure. Therefore, some schol- 

rs regard them as the same model in the experimental process 

 Júnior et al., 2019 ). 

As shown in Fig. 6 , we can see that both EDCO and SCIU have

xcellent performance for the accuracy of unknown source model 

ecognition, while EDCO_B is slightly inferior. The CCF_B method 

as the lowest accuracy of 89.8% on the UACC, and the CCF_A 

ethod is slightly better, with an accuracy of 92.6%. As shown in 

ig. 7 , we find that the EDCO method proposed in this paper has 

he best OACC performance at 96.2%, followed by EDCO_B, SCIU, 

nd CCF_A, and the CCF_B method has the worst performance. Ac- 

ording to the experimental results shown in Table 2 , compared 

ith other methods, EDCO shows great improvement in the recog- 

ition rate of known source camera models because EDCO includes 

ore detailed hypersurface envelope characterization of the known 

lass samples. The experimental results of EDCO_B and CCF_B are 

orse than those of EDCO and CCF_A, respectively, providing addi- 

ional evidence for the effectiveness of Algorithm 1 . 
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Fig. 5. The known camera model accuracy (%) when there is only one known camera model in the training set. 

Fig. 6. Unknown camera model accuracy (%) when there is only one known camera model in the training set. 

Fig. 7. Overall camera model accuracy (%) when there is only one known camera model in the training set. 
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Experiment II: To compare the approach adapted from Mayer 

t al. similarity Mayer et al. (2020) ; Mayer and Stamm (2018) , we

ssessed the performance of our proposed EDCO method for deter- 

ining whether two images are captured by different or the same 

amera models. 

Fig. 8 shows the rates of correctly detecting two images as 

ourced from different camera models: 

1. Known vs Known : both images captured by the camera models 

known to the test model. 
7 
2. Known vs Unknown : one image captured by a known source 

camera model and the other by an unknown source camera 

model. 

From the experimental results, we can find that the Mayer et al. 

imilarity method can achieve high accuracy for some image pairs, 

ncluding O1 and PR1, O1 and PA1,P1 and N2, etc. However, for 

ome image pairs, the Mayer et al. similarity method has low 

ecognition accuracy, for example, only 47.0% accuracy between 

1 and S1. Overall, the average accuracy of the EDCO method is 

he better than the Mayer et al. similarity method. However, in 
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Fig. 8. Overall accuracy (%) performance comparison: Mayer et al. similarity and EDCO. 

Table 3 

Overall accuracy (%) on the VISION dataset. 

KNOWN MODEL KACC UACC OACC 

Samsung_GalaxyS3Mini 85.0 99.7 98.3 

Apple_iPhone4s 90.0 93.9 93.5 

Huawei_P9 77.5 98.9 96.8 

LG_D290 82.5 99.7 98.0 

Lenovo_P70A 72.5 98.6 96.0 

Sony_XperiaZ1Compact 87.5 94.4 93.8 

Microsoft_Lumia640LTE 90.0 88.1 88.3 

OnePlus_A3000 75.0 97.8 95.5 

Samsung_GalaxyS5 100.0 100.0 100.0 

Huawei_P8 95.0 90.6 91.0 

AVERAGE 85.5 96.1 95.1 

t

e

o

m

o

m

p

i

a

i  

p

t

f

o

K

s

m

a

s

v

p  

t

e

4

a

s

i

c

w

s

Table 4 

Overall accuracy (%) on the Kaggle dataset. 

KNOWN MODEL KACC UACC OACC 

HTC_1_M7 78.0 90.8 89.5 

iPhone_4s 89.0 89.3 89.3 

iPhone_6 80.5 95.0 93.5 

LG_Nexus_5x 90.2 88.3 88.5 

Droid_Maxx 62.2 94.2 91.0 

Moto_Nexus_6 62.2 97.7 94.1 

Moto_X 65.9 82.1 80.5 

Galaxy_Note3 70.7 99.6 96.7 

Galaxy_S4 36.6 100.0 93.7 

Sony_NEX_7 91.5 100.0 99.1 

AVERAGE 72.7 93.7 91.6 

Fig. 9. Known camera model accuracy (%) values for the compared methods. 
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erms of the recognition accuracy of some image pairs, the Mayer 

t al. similarity method achieves the highest recognition accuracy 

f 100% (6 times), followed by EDCO (2 times). 

Experiment III: In order to prove the universality of the EDCO 

ethod proposed in this paper, additional experiment is carried 

ut on the VISION dataset ( Shullani et al., 2017 ), which contains 

ore than 35,0 0 0 images and videos captured using 35 different 

ortable devices of 11 major brands. We select 200 high-quality 

mages from each of the 10 brands and set them into training sets 

nd verification sets at a ratio of 7:3. According to the data shown 

n Table 3 , it can be seen that the EDCO method proposed in this

aper still achieves a good effect on the Vision dataset, in which 

he average accuracy of KACC, UACC and OACC are marked in bold 

ont. 

In addition, we test the proposed method EDCO on the dataset 

f IEEE’s Signal Processing Society-camera Model Identification 

aggle Competition ( Stamm et al., 2018 ). The Kaggle dataset con- 

titutes of 275 images each from 10 different smartphone camera 

odels, including point-and-shoot cameras, cell phone cameras, 

nd digital single-lens reflex cameras. All images are captured and 

tored as JPEGs using the default settings. The Kaggle dataset is di- 

ided into training set and verification set in a ratio of 7:3 for ex- 

eriments. According to the data shown in Table 4 , it can be seen

hat the EDCO method proposed in this paper still achieves a good 

ffect on the Kaggle dataset. 

.3.2. Ablation study 

As discussed above, the EDCO method shows some significant 

dvancements toward source camera identification on the open 

et when the experimental conditions are extremely harsh (there 

s only one class of camera models from known sources and 26 

lasses of camera models from unknown sources). In this section, 

e will compare the other distributions of the dataset and make a 

ystematic comparison with the recent state-of-the-art methods. 
8 
As shown in Fig. 9 , with the increase in the number of known 

amera models, the KACC values increase for all the methods. 

hen the number of known models in the training set is first in- 

reased, the performance of the SCIU method is greatly improved. 

oreover, since CCF_A and CCF_B need more known source cam- 

ra models for training, their KACC values improve relatively slowly 

ith the increase in the number of known models. The EDCO and 

DCO_B methods are relatively robustm and EDCO is superior to 

ther methods in both average accuracy and method stability. 

An examination of the experimental results presented in Fig. 10 

hows that the UACC values for all methods decrease with an in- 

reasing number of known source camera models; the reason is 

hat the training set has more positive class samples with an in- 

rease in the number of known models and sample size, so the 

escription of the boundary of the positive class samples is more 

bundant. At the same time, the number of samples from un- 

nown sources decreases, and the proportion of errors from un- 

nown camera models in the total number of samples from un- 

nown sources increases. 
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Fig. 10. Unknown camera model accuracy (%) values for the compared methods. 

Fig. 11. Overall camera model accuracy (%) values of the compared methods. 
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In Fig. 11 , we can see that with the increase in the number

f camera models from known sources, both the EDCO and SCIU 

ethods are stable in terms of OACC, but the overall recognition 

ccuracy of the proposed EDCO method is slightly higher. 

. Conclusion 

In this paper, we propose a novel EDCO method for camera 

odel identification on the open set. That is, given an image cap- 

ured by camera models that are unknown for the existing clas- 

ifier, EDCO is able to efficiently and effective identify the image. 

urthermore, EDCO can update the classifier with a new-found 

odel without retraining with the whole dataset and then link 

he input images to the corresponding class with high accuracy, 

s demonstrated by our experiments. 

Future work will focus on two directions. First, the source of the 

nknown samples that have been separated can be further classi- 

ed; however, this requires intense effort s because the number of 

pecific categories of the unknown source camera models is un- 

nown. Second, the flexibility of the algorithm can be further im- 

roved through data-adaptive processing. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Bo Wang: Conceptualization, Supervision, Project administra- 

ion. Yue Wang: Data curation, Writing – original draft, Methodol- 

gy, Software. Jiayao Hou: Visualization, Investigation, Validation. 

i Li: Writing – review & editing. Yanqing Guo: Writing – review 

 editing. 
9 
cknowledgment 

This work is supported by the National Natural Science Foun- 

ation of China (No. U1936117 , No. 62076052 , No. 61772111 ), 

he Science and Technology Innovation Foundation of Dalian (No. 

021JJ12GX018 ), and the Fundamental Research Funds for the Cen- 

ral Universities ( DUT21GF303 , DUT20TD110 , DUT20RC(3)088 ). 

upplementary materials 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ejps.2020.105216 . 

eferences 

hmed, F. , Khelifi, F. , Lawgaly, A. , Bouridane, A. , 2019. Comparative analysis of a

deep convolutional neural network for source camera identification. In: 2019 
IEEE 12th International Conference on Global Security, Safety and Sustainability, 

pp. 1–6 . 
lattar, A.M. , Memon, N.D. , Heitzenrater, C.D. , Goljan, M. , Fridrich, J. , 2015. Cfa-aware

features for steganalysis of color images. In: Proceedings of SPIE - The Interna- 

tional Society for Optical Engineering, 9409 . 94090V–94090V–13 
ayar, B. , Stamm, M. , 2017. Design principles of convolutional neural networks for 

multimedia forensics. Electronic Imaging 2017 (7), 77–86 . 
ayar, B. , Stamm, M. , 2018. Towards open set camera model identification using 

a deep learning framework. In: IEEE International Conference on Acoustics, 
Speech and Signal Processing, pp. 2007–2011 . 

ayram, S. , Sencar, H. , Memon, N. , Avcibas, I. , 2005. Source camera identification
based on CFA interpolation. In: IEEE International Conference on Image Process- 

ing, 3, pp. III–69 . 

ondi, L. , Baroffio, L. , Guera, D. , Bestagini, P. , Delp, E. , Tubaro, S. , 2017a. First steps
toward camera model identification with convolutional neural networks. IEEE 

Signal Process Lett 24, 259–263 . 
ondi, L. , Güera, D. , Baroffio, L. , Bestagini, P. , Delp, E. , Tubaro, S. , 2017b. A prelim-

inary study on convolutional neural networks for camera model identification. 
In: Media Watermarking, Security, and Forensics, pp. 67–76 . 

hoi, K. , Lam, E. , Wong, K. , 2006. Automatic source camera identification using the

intrinsic lens radial distortion. Opt Express 14 (24), 11551–11565 . 
osta, F.O. , Eckmann, M. , Scheirer, W. , Rocha, A. , 2012. Open set source camera at-

tribution. In: 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images, 
pp. 71–78 . 

osta, F.O. , Silva, E. , Eckmann, M. , Scheirer, W. , Rocha, A. , 2014. Open set source
camera attribution and device linking. Pattern Recognit Lett 39, 92–101 . 

reire-Obregón, D. , Narducci, F. , Barra, S. , Castrillón-Santana, M. , 2019. Deep learning

for source camera identification on mobile devices. Pattern Recognit Lett 126, 
86–91 . 

ao, S. , Xu, G. , Hu, R.M. , 2012. Camera model identification based on the character-
istic of CFA and interpolation. In: Shi, Y.Q., Kim, H.J., Perez-Gonzalez, F. (Eds.), 

Digital Forensics and Watermarking. Springer Berlin Heidelberg, Berlin, Heidel- 
berg, pp. 268–280 . 

arcía, J. , Crawford, B. , Soto, R. , Castro, C. , Paredes, F. , 2018. A k-means binarization

framework applied to multidimensional knapsack problem. Applied Intelligence 
48 (13), 357–380 . 

loe, T., Böhme, R., 2010. The dresden image database for benchmarking digital im- 
age forensics, volume 3, pp. 1584–1590. doi: 10.1080/15567281.2010.531500 . 

onzález, R. , Woods, R. , 1981. Digital image processing. IEEE Trans Pattern Anal 
Mach Intell PAMI-3, 242–243 . 

uang, Y. , Cao, L. , Zhang, J. , Pan, L. , Liu, Y. , 2018. Exploring feature coupling and

model coupling for image source identification. IEEE Trans. Inf. Forensics Secur. 
13 (12), 3108–3121 . 

uang, Y. , Zhang, J. , Huang, H. , 2015. Camera model identification with unknown
models. IEEE Trans. Inf. Forensics Secur. 10, 2692–2704 . 

únior, P.R.M. , Bondi, L. , Bestagini, P. , Tubaro, S. , Rocha, A. , 2019. An in-depth study
on open-set camera model identification. IEEE Access 7, 180713–180726 . 

ang, X. , Li, Y. , Qu, Z. , Huang, J. , 2012. Enhancing source camera identification

performance with a camera reference phase sensor pattern noise. Information 
Forensics and Security, IEEE Transactions on 7 (2), 393–402 . 

harrazi, M., Sencar, H.T., Memon, N., 2004. Blind source camera identification. In: 
2004 International Conference on Image Processing, 2004. ICIP ’04., volume 1, 

pp. 709–712Vol. 1. doi: 10.1109/ICIP.2004.1418853 . 
ekshmi, K. , Vaithiyanathan, V. , 2018. Source camera identification of image for 

forensic analysis using sensor fingerprints. In: 2018 Fourth International Con- 
ference on Computing Communication Control and Automation, pp. 1–5 . 

i, C. , 2010. Source camera identification using enhanced sensor pattern noise. IEEE 

Trans Inf Forensics Secur 5, 280–287 . 
i, R. , Li, C.T. , Guan, Y. , 2018. Inference of a compact representation of sensor finger-

print for source camera identification. Pattern Recognit 74, 556–567 . 
iu, B. , Xiao, Y. , Cao, L. , Hao, Z. , Deng, F. , 2012. Svdd-based outlier detection on un-

certain data. Knowl Inf Syst 34, 597–618 . 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/100004863
https://doi.org/10.13039/501100012226
https://doi.org/10.1016/j.ejps.2020.105216
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0013
https://doi.org/10.1080/15567281.2010.531500
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0019
https://doi.org/10.1109/ICIP.2004.1418853
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0024


B. Wang, Y. Wang, J. Hou et al. Computers & Security 113 (2022) 102571 

L  

L  

M  

M  

R  

S  

S  

S  

S  

T
T  

W  

W  

X  

Y  

Z  
iu, L. , Zhao, Y. , Ni, R. , Tian, Q. , 2018. Copy-move forgery localization using convolu-
tional neural networks and CFA features. Int J Digit Crime Forensics 10, 140–155 . 

iu, Y. , Huang, Y. , Zhang, J. , Shen, H. , 2019. Anti-noise image source identification.
Concurrency and Computation: Practice and Experience 31 (19) . 

ayer, O. , Hosler, B.C. , Stamm, M. , 2020. Open set video camera model verification.
In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and 

Signal Processing, pp. 2962–2966 . 
ayer, O. , Stamm, M. , 2018. Learned forensic source similarity for unknown cam-

era models. In: IEEE International Conference on Acoustics, Speech and Signal 

Processing, pp. 2012–2016 . 
afi, A.M. , Wu, J. , Hasan, M.K. , 2020. L2-constrained remnet for camera model iden-

tification and image manipulation detection, volume 12538 LNCS, pp. 267–282 . 
ameer, V.U. , Naskar, R. , 2020. Deep siamese network for limited labels classification

in source camera identification. Multimed Tools Appl 79 (37–38), 28079–28104 . 
chweighofer, G. , Segvic, S. , Pinz, A. , 2008. Online/realtime structure and motion for

general camera models. In: 2008 IEEE Workshop on Applications of Computer 

Vision, pp. 1–6 . 
hullani, D., Fontani, M., Iuliani, M., Shaya, O.A., Piva, A., 2017. Vision: a video and

image dataset for source identification. EURASIP Journal on Information Security 
2017 (1), 15. doi: 10.1186/s13635- 017- 0067- 2 . 

tamm, M. , Bestagini, P. , Marcenaro, L. , Campisi, P. , 2018. Forensic camera model
identification: highlights from the IEEE signal processing cup 2018 student com- 

petition [SP competitions]. IEEE Signal Process Mag 35 (5), 168–174 . 

ax, D. , Duin, R.P. , 2004. Support vector data description. Mach Learn 54, 45–66 . 
uama, A. , Comby, F. , Chaumont, M. , 2016. Camera model identification with the

use of deep convolutional neural networks. In: IEEE International Workshop on 
Information Forensics and Security, pp. 1–6 . 

ang, B. , Kong, X. , You, X. , 2009. Source camera identification using support vector
machines. Advances in Digital Forensics V . 

ang, B. , Zhong, K. , Li, M. , 2018. Ensemble classifier based source camera identifi-

cation using fusion features. Multimed Tools Appl 78, 8397–8422 . 
u, G. , Shi, Y. , 2012. Camera model identification using local binary patterns. In:

2012 IEEE International Conference on Multimedia and Expo, pp. 392–397 . 
ang, P. , Ni, R. , Zhao, Y. , Zhao, W. , 2019. Source camera identification based on con-

tent-adaptive fusion residual networks. Pattern Recognit Lett 119, 195–204 . 
heng, Y. , Cao, Y. , Chang, C. , 2020. A PUF-based data-device hash for tampered im-

age detection and source camera identification. IEEE Trans. Inf. Forensics Secur. 

15, 620–634 . 

Bo Wang received his B.S. degree in electronic and infor- 

mation engineering and his M.S. degree and Ph.D. degree 
in signal and information processing from Dalian Univer- 

sity of Technology, Dalian, China, in 20 03, 20 05 and 2010, 

respectively. From 2010 to 2012, he was a postdoctoral re- 
search associate with the faculty of Management and Eco- 

nomics at Dalian University of Technology. He is currently 
an associate professor in the School of Information and 

Communication Engineering at Dalian University of Tech- 
nology. His current research interests focus on the areas 

of multimedia processing and security and artificial intel- 
ligence security. 
10 
Yue Wang received her B.S. degree in Communication En- 
gineering from Shenyang University of Technology, China, 

in 2019. She is currently pursuing her M.S. degree in Elec- 
tronic and Communication Engineering from Dalian Uni- 

versity of Technology, Dalian, China. Her current research 

interests are image processing and digital image forensics. 

Jiayao Hou received his B.S. degree in Electronic and In- 
formation Engineering from Dalian University of Technol- 

ogy, China, in 2020. He is currently pursuing his M.S. de- 
gree in Electronic and Communication Engineering from 

Dalian University of Technology, Dalian, China. His current 

research interests are image processing and digital image 
forensics. 

Yi Li received the B.E. and M.E. degrees from the Dalian 
University of Technology (DUT), Dalian, China, in 2014 

and 2017, respectively, and the Ph.D. degree from the Uni- 
versity of Chinese Academy of Sciences (UCAS), Beijing, 

China, in 2020. She is currently an Associate Professor 
with the School of Artificial Intelligence, DUT. Her re- 

search interests include computer vision, pattern recog- 
nition and multimedia computing. 

Yanqing Guo is with the School of Information and Com- 

munication Engineering, Dalian University of Technology, 
Dalian, China. Yanqing Guo (M’ 13) received his B.S. and 

Ph.D. degrees in electronic engineering from the Dalian 
University of Technology of China, Dalian, China, in 2002 

and 2009, respectively. He is currently a Professor with 
the Faculty of Electronic Information and Electrical En- 

gineering, Dalian University of Technology. His research 

interests include machine learning, computer vision, and 
multimedia security. 

http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0031
https://doi.org/10.1186/s13635-017-0067-2
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00395-3/sbref0040

	Open-Set source camera identification based on envelope of data clustering optimization (EDCO)
	1 Introduction
	2 Related work
	2.1 Source camera identification
	2.2 Camera model identification in the open set

	3 Proposed approach
	3.1 Model training with positive samples
	3.2 Unknown model separation and known model linking

	4 Experiments and results
	4.1 Settings
	4.2 Evaluation metrics
	4.3 Results and discussion
	4.3.1 Study of EDCO
	4.3.2 Ablation study


	5 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgment
	Supplementary materials
	References


