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A B S T R A C T

The purpose of source camera identification (SCI) is to identify the source device of target images, so as
to ensure the source reliability of digital images. However, most state-of-the-art results require sufficient
training samples which are hard to obtain in practice. In this work, we propose an approach based on multi-
distance measures and coordinate pseudo-label selection (MDM-CPS) approach to solve the problem of few-shot
sample databases. Based on semi-supervised learning, this approach iteratively expands and updates the labeled
database. Our approach drastically reduces the interference of noisy pseudo-labels in training and ensures
highly-confident prediction of the pseudo-label samples. Through comprehensive experiments, our approach
has achieved the best performance in few-shot sample scenarios of the common benchmark databases (i.e.,
Dresden database and VISION database) in the field of source camera identification.
1. Introduction

Image is one of the most important information mediums. However,
an enormous number of photo editing applications make it easy to
tamper with images. In order to ensure the authenticity and reliability
of image information, digital image forensics technology has played
an important role. Considering the difficulty in obtaining digital wa-
termark information in judicial forensics scenarios (Dadkhah et al.,
2017; Lv, Xia, Zhao, Qiao, & Zhu, 2021), passive forensics technology
is usually more appropriate. Source camera identification (SCI) has
a significant position in the field of digital image passive forensics.
The practical significance of this work is that in the actual judicial
evidence-gathering cases, the forensics personnel can further confirm
the suspect’s crime tools by identifying the generating equipment of
suspicious images, and provide important evidence for the follow-up
investigation. In addition, there are also many cases in the market
where images taken by SLRs cameras are used to fake propaganda by
impersonating images taken by mobile phones. Therefore, the develop-
ment of camera source identification technology is of great significance
for judicial evidence collection and maintaining social stability. Some
recent research shows that with the rapid development of technology,
the research on source camera identification technology has very im-
portant practical significance (Akbari et al., 2022; Bernacki, 2020). Due
to the difference in device hardware (e.g. sensor, processor) (Gupta &
Tiwari, 2018; Li, Li, & Guan, 2018; Li, Lin, Kotegar, et al., 2021) and
software (e.g. the build-in image generation algorithms in the image
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creating process) (Roy, Chakraborty, Sameer, & Naskar, 2017; Wang,
Zhong, & Li, 2019; Xu, Wang, Zhou, Xi, & Wang, 2016), traces may be
left in the images.

SCI problem has been widely studied in the past. However, the
existing approaches can only obtain good model performance when the
number of training set samples is sufficient. The model performance
is poor when the training data sets are insufficient (a.k.a., few-shot
sample databases). It is worth noting that in actual judicial forensics
scenarios, obtaining sufficient labeled samples is usually expensive
and time-consuming and sometimes impossible. Furthermore, in some
short-term judicial forensics cases, it is not realistic to artificially pro-
duce a large number of data sets with labeled samples. This problem is
closely related to the few-shot problem in the context of machine learn-
ing. Typical solutions include data expansion (Hu, Yang, Liu, Liu, &
Wang, 2021; Wu et al., 2021), data enhancement (Osahor & Nasrabadi,
2022; Vu, Luong, Le, Simon, & Iyyer, 2021; Zhou, Zheng, Tang, Jian,
& Yang, 2022), semi-supervised learning (Ding, Wang, Caverlee, & Liu,
2022; Huang, Geng, Jiang, Deng, & Xu, 2021; Zhang et al., 2022), etc.

In this paper, we propose the MDM-CPS approach to solve the
problem of the labeled few-shot sample data set in source camera
identification. The contributions of our research are summarized as
follows:

• We use the multiple distance measures to expand the few-shot
sample database, so as to solve the problem that the deep learning
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approach based on coordinate pseudo-label selection does not
perform well in few-shot sample sets.

• We use the coordinate pseudo-label selection approach to itera-
tively update the subset of positive and negative pseudo labels
which are less noisy, where the coordinate attention blocks has
the spatial long-range feature information interactions, thus effec-
tively solving the problem of insufficient information in few-shot
sample sets.

• We conducted comprehensive and reliable experiments on two
important threshold parameters to ensure the best model per-
formance. The experimental results also show that the proposed
MDM-CPS approach is superior to other existing approaches.

. Related works

Source Camera Identification. Generally speaking, the existing
source camera identification approaches are mostly realized from the
two following aspects: comparing the differences in the inherent char-
acteristics of the camera hardware, and comparing the differences in
the processing algorithms of the camera software.

In terms of camera hardware characteristics, Lukas, Fridrich, and
Goljan (2006) first used sensor pattern noise (SPN) for source camera
identification, which was caused by the inhomogeneity of the image
sensor and the defects of the sensor manufacturing process. Zhao,
Zheng, Qiao, and Xu (2019) designed a PRNU feature classifier based on
a weight function to achieve feature dimensionality reduction. Bruni,
Tartaglione, and Vitulano (2021) used the coherence of PRNU weighted
estimations to measure the similarity of different regions of images,
and demonstrated that this method is also robust to images from social
networks. Hsiao, Takenouchi, Kikuchi, Sakiyama, and Miura (2021)
proposed a secure pairing framework based on PRNU, extending the
traditional device classification model to model, device, and other lev-
els. Besides, Convolutional neural networks (CNNs) can also be used to
infer camera fingerprint information (Freire-Obregón, Narducci, Barra,
& Castrillon-Santana, 2019). Bennabhaktula, Alegre, Karastoyanova,
and Azzopardi (2022) used the hierarchical classification (brand, model
and equipment) ConvNets model based on homogeneous patches, and
proved that the performance of this framework is better than single
classifier.

Besides, depending on the post-processing algorithms of different
camera models, the image source can be identified based on the cam-
era’s built-in image processing algorithms. Bayram, Sencar, Memon,
and Avcibas (2005) proposed to use the traces left by the color filter
array (CFA) interpolation algorithm of cameras for model classification.
In addition, in the past 20 years, research on the use of CFA features in
the field of image forensics has never stopped. Many studies (Akiyama,
Tanaka, & Okutomi, 2015; Ferrara, Bianchi, De Rosa, & Piva, 2012;
Huang & Suzuki, 2022; Suzuki & Kyochi, 2020; Swaminathan, Wu,
& Liu, 2007) have shown that CFA features can be used as a basis
for interpolation algorithms to distinguish different camera models,
and a large number of experimental results have proven the effec-
tiveness of CFA features. Deng, Gijsenij, and Zhang (2011) proposed
an automatic white balance (AWB) approximation algorithm for the
first time. Xu et al. (2016) combined local binary pattern (LBP) and
local phase quantization (LPQ) for multiple feature classification. Vil-
lalba, Orozco, López, and Castro (2016) proposed a technology based
on sensor noise and video-key-frame-based wavelet transform extrac-
tion. Rahim and Foozy (2020) proposed texture features based on gray
level co-occurrence matrix (GLCM) and gray level run-length matrix
(GLRLM). López, Orozco, and Villalba (2021) proposed block-based
enhanced sensor fingerprint and studied the problem of source camera
identification in an open scenario.

Few-shot Scenario. However, in the few-shot scenario, the per-
formance of the approaches mentioned above reduces significantly. In
order to solve the problem, Tan et al. (2015) used the set projection
2

(EP) approach based on semi-supervised learning to construct multiple m
prototype sets to realize the expansion of few-shot sample sets. Liang,
Zhang, and Zhang (2021) used the attention multi-source fusion few-
shot learning (AMF-FSL) approach. Sameer and Naskar (2020) used the
deep siamese network to maximize the training space of the model
by inputting pairs of samples, so as to achieve data enhancement. Wu
et al. (2021) expand few-shot sample sets by generating virtual samples
based on mega-Trent-diffusion (MTD). Wang, Hou, Ma, Wang, and
Wei (2022) expanded the labeled few-shot sample data set based on
multiple distances, and then calibrated the pseudo labels with SVM
self-correction mechanism to improve model performance. In summary,
the key to solving the few-shot scenario is to expand the amount of
information of few-shot sample data sets.

Unlike the existing few-shot sample scenario approaches, we cre-
atively combine the interpretability of traditional features (i.e. CFA
features, and provide visualization for their interpretability) with the
optimized learning ability of deep learning networks. Furthermore,
the interpretable properties of traditional features can filter pseudo-
label samples more scientifically and effectively, while deep learning
methods can obtain better feature learning capabilities. Finally, our
MDM-CPS approach was proposed.

3. The MDM-CPS approach

In order to make full use of more detailed information on the few-
shot samples, this chapter proposes an approach of few-shot sample
source camera identification based on multiple distance measures and
coordinate pseudo-label selection, named the MDM-CPS approach. The
complete MDM-CPS approach framework diagram is shown in Fig. 1.
This approach is based on semi-supervised learning, initially expanding
the labeled database through multiple distance measures, and then
iteratively updating the labeled database after finishing coordinate
pseudo-label selection. Our goal is to expand the data by adding reliable
pseudo-label samples to the few-shot sample database, so as to obtain
higher source camera identification accuracy.

3.1. Phase I: The multiple distance measures module

This module in this paper is based on multiple distance measures in
paper (Wang et al., 2022) and has been improved in our approach: By
setting a new adaptive threshold 𝑛 for the number of pseudo labels, the
number of pseudo-label samples is reduced while obtaining a higher
pseudo-label accuracy, making the deep learning model information
based on pre-expanded data sets training more accurate.

Fig. 2 shows the frame diagram of feature extraction and multiple
distance measures used to expand few-shot sample databases. After
extracting the effective features of the sample, we use multiple distance
measures to expand the labeled few-shot sample set. The specific
approach is shown in Algorithm 1. For each dimension of the extracted
sample features, we calculate multiple distance measures (Manhattan
distance, Euclidean distance and Chebyshev distance) between each
labeled sample and all unlabeled sample, and sort these distance mea-
sures in ascend order to obtain 𝑚 unlabeled samples closest to each
abeled sample under different measure rules. After that, in order to
nsure the reliability of these samples, we separately count the times
f each unlabeled sample for each class, and then select the first
unlabeled samples and assign them labels of the same class, thus

ompleting the expansion of labeled few-shot sample set. These selected
igh reliability samples are pseudo-label samples.

Among them, we use CFA image statistical features as effective
eatures. More details of the CFA features will be described in Section 4:
lgorithm related details.

As mentioned before, the model of the deep learning algorithm can-
ot be fully trained due to insufficient data in few-shot scenarios, which
mpacts the accuracy of source identification. To solve this problem,
e expanded the few-shot sample database using multiple distance

easures to provide sufficient training samples for the subsequent
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Fig. 1. The framework of MDM-CPS approach.
Fig. 2. The framework for feature extraction and multiple distance measures.
Fig. 3. The framework for coordinate pseudo-label selection module.
coordinate pseudo-label selection. However, note that as the number
of labeled samples is limited, expanding over-numbered pseudo-label
samples may cause issues such as incorrectly pseudo-label samples and
impact the model performance. Accordingly, we limit the number of
pseudo-label samples for each class in a controlled manner to ensure
the accuracy of selecting pseudo-label samples.

3.2. Phase II: The coordinate pseudo-label selection module

After expanding at least 𝑛 samples per camera category, we get
pseudo-label samples selected based on interpretable features and mul-
tiple distance measures and include them in the existing few-shot
sample database to build a new training sample database. Next, we use
the coordinate pseudo-label selection module for semi-supervised learn-
ing. The framework diagram for the coordinate pseudo-label selection
module is shown in Fig. 3. The coordinate attention module in Hou,
3

Zhou, and Feng (2021) has the spatial long-range feature information
interactions, and more details will be given in Section 4: Algorithm-
related details. During iterations, we update the less-noisy pseudo-label
sets (both positive and negative) by selecting the pseudo-label samples
with higher confidence probability.

For multiple classification tasks, the traditional learning approach
is to use the correct labels of samples. However, in the semi-supervised
learning field, since the pseudo labels are sometimes inaccurate, the
positive learning approach may provide some wrong information. As
the training proceeds, the model will gradually fit noise labels, thereby
reducing the performance. Fortunately, the negative learning approach
can make full use of the information of noise labels (Kim, Yim, Yun,
& Kim, 2019). Eqs. (1) and (2) show the cross-entropy loss function of
positive learning and negative learning approaches respectively:

(𝑓, 𝑦) = −
𝑐
∑

𝒚𝑘 log𝒑𝑘, (1)

𝑘=1
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Algorithm 1 Pseudo-label samples selection algorithm based on
multiple distance measures
Symbols:

𝑢: Set of unlabeled samples
: Set of few-shot labels
𝑝: Set of selected effective pseudo-label samples
𝑙: Set of samples with label 𝑙 ∈ 
: Collection of multiple distance measures
𝑚: The multiple distance measure threshold for each labeled sample
𝑛: The pseudo-label number threshold for each class
1. Extract feature vectors of all samples, including all labeled and
unlabeled samples;
2. Calculate multiple distance measure vectors:
for 𝑖 ∈  and 𝑠𝑙 ∈ {𝑙 ∶ 𝑙 ∈ } do

Form multiple distance measure vectors 𝐷𝑠𝑙 ,𝑖 = {𝑑(𝑖)𝑠𝑙 ,𝑠𝑢 ∶ 𝑠𝑢 ∈ 𝑢}
Sort 𝐷𝑠𝑙 ,𝑖 in ascend order and take the first 𝑚 entries for each
sample to form a new vector 𝐷′

𝑠𝑙 ,𝑖
end for
3. Selecting effective pseudo-label samples:
for 𝑙 ∈  do
for 𝑠𝑢 ∈ 𝑢 do

Count for 𝑠𝑢 in {𝐷′
𝑠𝑙 ,𝑖

∶ 𝑠𝑙 ∈ 𝑙 , 𝑖 ∈ } and form count vector
𝐶𝑠𝑢 ,𝑖

end for
Sort 𝐶𝑠𝑢 ,𝑖 in ascend order and form the sample set 𝑝 corresponding
to the first 𝑛 entries for each class
for 𝑠𝑝 ∈ 𝑝 do

Label 𝑠𝑝 with pseudo-label 𝑙 (Note: these pseudo-label samples
will be expanded to the corresponding few-shot sample sets)

end for
end for

(𝑓, 𝑦̄) = −
𝑐
∑

𝑘=1
𝒚𝑘 log

(

1 − 𝒑𝑘
)

, (2)

where 𝒚𝑘 is the real label, and 𝒑𝑘 is the probability prediction distri-
ution of the model output after the softmax activation function. 𝒚𝑘 is

the complementary label in negative learning approach. For multiple
classification tasks, the complementary label provides the information
that the training samples do not belong to some classes. One sample can
have multiple complementary labels. The closer the model predicts to
the complementary label, the greater the loss of the negative learning
approach, so that the model can make use of the supplementary label
information.

For each sample 𝑢 ∈  , the corresponding pseudo-label vector 𝒈(𝑖)

can be determined according to the confidence thresholds for positive
and negative labels (Rizve, Duarte, Rawat, & Shah, 2021):

𝑔(𝑖)𝑘 = 1
[

𝑝(𝑖)𝑘 ≥ 𝜏𝑝
]

+ 1
[

𝑝(𝑖)𝑘 ≤ 𝜏𝑛
]

, (3)

where 𝜏𝑝 and 𝜏𝑛 are the confidence thresholds for positive and negative
labels of each camera class respectively (𝜏𝑝, 𝜏𝑛 ∈ (0, 1)). If the proba-
ility score is sufficiently high, this sample is likely to belong to the
urrent class, then the positive label is selected; On the contrary, if the
robability score is sufficiently low, this sample is likely not to belong
o the current class, then the negative label is selected. 1 means that
his value is 1 when the probability prediction score is not lower than
he confidence threshold, otherwise, it becomes 0.

Based on the high confidence pseudo-label vector 𝑔(𝑖)𝑐 , we filter out
the noise labels with insufficient confidence, so as to effectively reduce
the noise interference during training. For multi-label classification, the
4

cross-entropy loss based on the confidence threshold for positive and
negative labels is modified to Eq. (4):


(

𝒚𝒌(𝑖), 𝒚𝒌(𝑖), 𝒈𝒌(𝑖)
)

= − 1
𝑠(𝑖)

𝐾
∑

𝑘=1
𝑔(𝑖)𝑘

[

𝑦̃(𝑖)𝑘 log
(

𝑦̂(𝑖)𝑘
)

+
(

1 − 𝑦̃(𝑖)𝑘
)

log
(

1 − 𝑦̂(𝑖)𝑘
)]

(4)

where 𝑠(𝑖) is the number of pseudo labels selected by sample 𝑖, 𝑦̂(𝑖)𝑘 is
the probability prediction output of the model, and 𝑦̃(𝑖)𝑘 is the pseudo
labels assigned to unlabeled samples. By using a subset of pseudo-labels
with low noise for iterative training, the accuracy of the pseudo-label
samples is further improved, so the overall performance of the model
is improved.

4. Algorithm related details

4.1. CFA features

For cost reasons, each pixel point data collected by CMOS/CCD
image sensor in the camera provides only one color data (Red, Green, or
Blue, i.e. RGB channel) for each pixel point, while the CFA interpolation
algorithm can effectively restore the color information of the three
channels. The CFA interpolation algorithms used by different camera
manufacturers are generally different (Swaminathan et al., 2007). For
each pixel and all pixels in its neighborhood, the interpolation model
is calculated based on Eq. (5).

𝐆 = 𝑎𝑔1𝑔1 +⋯ + 𝑎𝑔
(2𝑘+1)2−1

𝑔(2𝑘+1)2−1 + 𝑎𝑟1𝑟1 +⋯

+𝑎𝑟
(2𝑘+1)2

𝑟(2𝑘+1)2 + 𝑎𝑏1𝑏1 +⋯ + 𝑎𝑏
(2𝑘+1)2

𝑏(2𝑘+1)2
(5)

Respectively, 𝑎𝑟𝑖 , 𝑎𝑔𝑖 and 𝑎𝑏𝑖 are the CFA interpolation coefficient
weights of the red, green and blue channels in the color images. 𝑟𝑘𝛼 ,
𝑔𝑘𝛼 and 𝑏𝑘𝛼 are the 𝛼 interpolation coefficient of the neighborhood
of the 𝑘 pixel in these channels. According to the color distribution
of Bayer CFA mode, the characteristic matrix of CFA interpolation
coefficients can be obtained by solving the mean and variance of the G
interpolation coefficients of R and B sampling points, as well as the R
and B interpolation coefficients of two neighboring G sampling points.

It is worth noting that some studies have shown that it is effective
to distinguish different camera models based on CFA interpolation
features (Akiyama et al., 2015; Bayram et al., 2005; Ferrara et al.,
2012; Huang & Suzuki, 2022; Suzuki & Kyochi, 2020; Swaminathan
et al., 2007). This is because CFA features are extracted based on CFA
interpolation algorithms for different camera models. In the spatial
domain, the sum of the distances between the elements of multiple
vectors can represent differences between feature vectors, and the
larger the difference in distances, the greater the difference in CFA
interpolation approaches. In addition, in the experimental section, we
also provided a visual version of CFA features to further prove the
rationality of distinguishing camera models based on CFA features.

4.2. Multiple distance measures

We use Manhattan distance (i.e., one norm), Euclidean distance
(i.e., two norm), and Chebyshev distance (i.e., infinite norm) to cal-
culate the spatial similarity between the CFA features of samples.
The assignment of pseudo labels is realized by finding points with
similar features in the spatial domain. The three distance measures are
calculated in Eqs. (6), (7) and (8):

𝑑1 = |

|

𝑥1 − 𝑥2|| + |

|

𝑦1 − 𝑦2|| (6)

𝑑2 =
√

(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 (7)

𝑑 = max(|𝑥 − 𝑥 | , |𝑦 − 𝑦 |) (8)
∞ | 2 1| | 2 1|
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4.3. Semi-supervised learning

In many cases, it is too expensive or impossible to collect many
labeled samples, however, a large number of unlabeled samples are
available. Semi-supervised learning (SSL) is an effective approach at
this time. In the semi-supervised learning approach, we can train the
classifiers on labeled few-shot databases and predict the unlabeled
samples. These unlabeled data predictions can be used as ‘‘pseudo
labels’’ in the iteration of the classifiers, and a more stable and reliable
network model can be obtained finally. Compared with the approach of
only using labeled few-shot samples, semi supervised learning can use
unlabeled samples to generate better decision boundaries, and therefore
the training model has better performance.

4.4. Coordinate attention blocks

In the task of source camera identification, the networks need to fo-
cus on fingerprint information inside the training images. In paper (Hou
et al., 2021), coordinate attention blocks are global-level attention
mechanism, however, this module is not used for tasks in the field
of camera source identification. We use the global feature information
interaction capabilities of coordinate attention blocks to enable deep
learning models to learn more comprehensive information about input
images, thereby further improving the performance of our approach.

In order to encourage the interaction of attention blocks with long-
range feature information in the spatial domain, the coordinate at-
tention blocks generate a pair of direction-aware feature maps by
aggregating the features of the input image along two spatial directions.
After that, the direction-aware feature maps are weighted with the
shared 1 × 1 convolution kernel and then weighted with different 1 × 1
onvolution kernels of the two spatial directions. By multiplying the
ttention weights of the two spatial directions, the attention weights
f each feature point can be obtained. In the process of coordinate
ttention blocks work, each feature point obtains the global attention
eight and the attention weight along the two spatial directions, so as

o realize the attention information interactions in the global and local
patial directions.

. Experimental results and analysis

.1. Experimental image databases and settings

In order to fully evaluate the performance of the MDM-CPS ap-
roach proposed in this paper, we have selected the most widely used
ublic databases in source camera identification: Dresden database
Gloe & Böhme, 2010) and VISION (Shullani, Fontani, Iuliani, Al Shaya,

Piva, 2017) database.
In this experiment, we select 14 different brands of cameras (in

resden database) and 11 different brands of cameras (in VISION
atabase), as shown in Tables 1 and 2. Considering the influence of the
umber of labeled few-shot samples on the accuracy of source camera
dentification, we select the number of labeled samples ranging from 5,
0, 15, 20 and 25 in each class in the comparison experiment. Besides,
he test database consists of 130–438 unlabeled samples in each class,
ith a total of 2791 (in the Dresden database) and 2163 (in the VISION
atabase) image samples. Based on the multi-distance measures, we
inally select 𝑛 pseudo-label samples for each class from these unlabeled
amples to expand the few-shot sample databases and then use the
ooperative pseudo-label selection module to train a model to get the
5

inal source camera identification accuracy results.
Table 1
Database in experiments (Dresden).

Camera model Abbr. Number of samples

Agfa_DC-504 A1 167
Canon_PowerShotA640 C1 188
Casio_EX-Z150 C2 181
FujiFilm_FinePixJ50 F1 209
Kodak_M1063 K1 463
Nikon_CoolPixS710 N1 186
Olympus_mju_1050SW O1 202
Panasonic_DMC-FZ50 P1 262
Pentax_OptioA40 P2 169
Praktica_DCZ5.9 P3 209
Ricoh_GX100 R1 192
Rollei_RCP-7325XS R2 198
Samsung_L74wide S1 231
Sony_DSC-H50 S2 284

Table 2
Database in experiments (VISION).

Camera model Abbr. Number of samples

Apple_iPad2 A1 171
Asus_Zenfone2Laser A2 209
Huawei_Ascend H1 155
Lenovo_P70A L1 216
LG_D290 L2 227
Microsoft_Lumia640LTE M1 187
OnePlus_A3000 O1 287
Samsung_GalaxyS3 S1 207
Sony_XperiaZ1Compact S2 215
Wiko_Ridge4G W1 253
Xiaomi_RedmiNote3 X1 311

5.2. Algorithm performance evaluation and analysis

In the part of the multi-distance measure, in order to ensure the
accuracy of the pseudo labels of the expansion of the few-shot sample
set, we need to match the optimal parameter values of the thresholds
𝑚 and 𝑛. When the number of few-shot samples in each class is 1, 3
and 5, and the value of 𝑚 and 𝑛 range from 1 to 50, we conducted
sufficient comparative experiments. The results are shown in Fig. 4.
When 𝑚 = 𝑛, the accuracy rate of pseudo labels can reach the maximum
point approximately, and when the value of 𝑛 is smaller, it means that
the number of pseudo-label samples finally selected is smaller and the
accuracy rate is higher. Considering the balance between the number
of expanded pseudo-label samples and the accuracy rate of the pseudo
labels, we finally choose 𝑚 = 𝑛 = 10.

In the comparative experiment, we mark the approach using only
the pseudo-label selection module as PS, and the approach using the
pseudo-label selection module with coordinate attention as CPS. In
addition, in order to demonstrate the effectiveness of the multi-distance
measures, we mark the approach using the multi-distance measures
and the pseudo-label selection module as MDM-PS and finally mark
our proposed approach with all modules as MDM-CPS. The results of
comparative experiments on multiple databases are shown in Figs. 5
and 6.

From the results of multiple experimental databases, each approach
we proposed has a positive improvement in performance, which shows
similar results on multiple databases. In addition, the smaller the
number of few-shot samples, the more obvious the performance im-
provement of few-shot sample database expansion based on multi-
distance measures, which shows that data expansion is an effective
solution for the deep learning algorithm in the case of few-shot samples.
The experimental results show that our proposed approach is widely
applicable to solve the problem of few-shot sample source camera
identification.

At the same time, in order to verify the stability of the model in

an extremely few-shot sample environment, we carried out a series of
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Fig. 4. Source camera identification accuracy versus the multiple distance measure threshold 𝑚 and the pseudo-label number threshold 𝑛 on multiple databases.
stability experiments with the proposed MDM-CPS approach. When the
number of labeled samples in each class is quite small (i.e., only one
sample in each camera class), the quality of the selected samples will
have a great impact on the final classification accuracy. Therefore, we
conducted 20 groups of random repeated experiments when there was
only one sample in each class and averaged the experimental results,
as shown in Figs. 7 and 8. The experimental results show that our
approach has reliable source camera identification performance in the
case of extremely few-shot samples.

In addition, in order to evaluate the performance of our proposed
MDM-CPS approach in the field of source camera identification, we
6

have made fair comparison with other existing approaches under the
same database and experimental settings (Sameer & Naskar, 2020; Tan
et al., 2015; Wang et al., 2022; Wu et al., 2021). The experimental
results in Table 3 show the superiority of our approach in the field of
source camera identification.

In addition, in order to test the performance of our MDM-CPS
approach in more complex situations, we re-selected all camera classes
including different camera brands and models for each database. We
selected 27 classes (in the Dresden database) and 35 classes (in the
VISION database) to simulate the more complex situations in the actual
judicial forensics scene. The experimental results are shown in Fig. 9,
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Fig. 5. Source camera identification accuracy for different approaches (%) (Dresden
Database).

Fig. 6. Source camera identification accuracy for different approaches (%) (VISION
Database).

Fig. 7. Stability analysis with 1 sample per class in Dresden database (%).

Fig. 8. Stability analysis with 1 sample per class in VISION database (%).

which fully proves the powerful performance of our model in dealing
with complex multiple classification problems.

We compared traditional machine-learning-based Multi-DS
approach, our proposed MDM-CPS approach, and the CPS approach of
directly using semi-supervised deep learning. We accurately recorded
7

Fig. 9. Source camera identification accuracy for all camera models in multiple
databases (%).

Table 3
Source camera identification accuracy compared with the existing approaches (%).

Approach Dresden VISION

Tan et al. (2015) 73.84 79.94
Wu et al. (2021) 75.16 80.49
Sameer and Naskar (2020) 85.30 75.20
Wang et al. (2022) 86.08 85.56
MDM-CPS 92.43 87.74

the running time of each group of experiments. The experimental
results are shown in Table 4. From the experimental results, traditional
machine learning based methods are faster in training classification
models, while our approach is based on deep learning, which needs to
iteratively update the pseudo-label sample data set with a large number
of high-quality samples and requires many rounds of iterative training
to obtain the best results. Therefore, deep learning models have better
feature learning capabilities and better camera model classification
performance. In addition, the training time of the Multi-DS-based
machine learning method with respect to the number of samples is
linearly increasing, with a time complexity of O(n). The CPS approach
has a time complexity of O(n) when training based on few-shot sample
sets, and the speed of growth of the MDM-CPS approach also has the
time complexity of O(n) when training based on pre-expanded few-shot
sample sets.

In Section 4.1, we discuss the effectiveness of CFA features. Here,
we further demonstrate that CFA features can be used for source
camera identification tasks through the experiment visualization results
of CFA features. We considered two situations and visualized the CFA
features separately: (1) CFA visualization results of photos taken by
different camera models in the same scene; (2) CFA visualization results
of photos taken by the same camera model in different scenes. The
visualization experiment results are shown in Figs. 10 and 11.

From the experimental results, the distribution of CFA features in
the spatial domain is most affected by the camera model, whereas
variations in the actual captured scenes hardly affect the distribution of
CFA features, This also explains why the source camera identification
results from images with similar CFA features are consistent.

6. Conclusion

The performance of existing source camera identification
approaches will deteriorate in few-shot sample source forensics scene.
In this work, we propose the MDM-CPS approach to solve this problem.
This approach expands the few-shot sample labeled database through
the multi-distance measures and then uses the coordinate pseudo-label
selection module to achieve the pseudo-label iterative learning of high
confidence prediction for the expanded database, so as to reduce the
interference of noise pseudo labels. The experimental results show that
our proposed approach can effectively improve the accuracy of source
camera identification when solving the few-shot sample problem, and
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Table 4
Comparison of time complexity of different approaches (minutes).

Method and database The number of labeled training samples per class

5 10 15 20 25

Phase I Phase II Total Phase I Phase II Total Phase I Phase II Total Phase I Phase II Total Phase I Phase II Total

Multi-DS, Dresden \ \ 1.30 \ \ 2.58 \ \ 3.90 \ \ 5.14 \ \ 6.45
Multi-DS, VISION \ \ 1.07 \ \ 2.16 \ \ 3.22 \ \ 4.31 \ \ 5.42
CPS, Dresden 6.50 122.01 128.61 13.01 122.95 135.96 19.53 124.03 143.56 26.05 124.35 150.40 32.56 125.03 157.59
CPS, VISION 5.10 94.03 99.13 10.20 94.08 104.28 15.30 94.15 109.45 20.41 94.22 114.63 25.51 94.33 119.84
MDM-CPS, Dresden 20.03 122.03 142.06 26.70 123.44 150.14 33.46 124.87 158.33 40.20 125.55 165.75 46.83 128.01 174.84
MDM-CPS, VISION 15.67 94.03 109.70 20.83 94.63 115.46 26.05 95.28 121.33 31.26 96.01 127.27 36.41 96.48 132.89
Fig. 10. CFA visualization results of photos taken by different camera models in the same scene.
Fig. 11. CFA visualization results of photos taken by the same camera model (Agfa_DC-504) in different scenes.
our approach is superior to other existing approaches. Besides, in the
case of extremely few-shot samples, our model can also ensure reliable
performance, which provides a practical solution for the actual judicial
forensics problems.
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