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a b s t r a c t 

Deep facial attribute prediction has received considerable attention with a wide range of real-world ap- 

plications in the past few years. Existing works almost extract abstract global features at high levels of 

deep neural networks to make predictions. However, local features at low levels, which contain detailed 

local attribute information, are not well exploited. In this paper, we propose a novel Bi-directional Ladder 

Attentive Network (BLAN) to learn hierarchical representations, covering the correlations between feature 

hierarchies and attribute characteristics. BLAN adopts layer-wise bi-directional connections based on the 

autoencoder framework from low to high levels. In this way, hierarchical features with local and global at- 

tribute characteristics could be correspondingly interweaved at each level via multiple designed Residual 

Dual Attention Modules (RDAMs). Besides, we derive a Local Mutual Information Maximization (LMIM) 

loss to further incorporate the locality of facial attributes to high-level representations at each hierarchy. 

Multiple attribute classifiers receive hierarchical representations to produce local and global decisions, 

followed by a proposed adaptive score fusion module to merge these decisions for yielding the final pre- 

diction result. Extensive experiments on two facial attribute datasets, CelebA and LFWA, demonstrate that 

our BLAN outperforms state-of-the-art methods. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Facial attributes represent intuitive semantic features that de-

cribe visual properties of face images [1,2] , such as smiling and

yeglasses , contributing to numerous real-world applications, e.g.,

ace verification [3,4] , face recognition [5,6] , and face retrieval [7,8] .

iven a face image, facial attribute prediction aims to estimate

hether desired attributes are present by learning discriminative

eature representations and constructing accurate attribute classi-

ers. 

Recently, deep convolutional neural networks (CNNs) have

ained great popularity and have dramatically improved the per-

ormance of state-of-the-art algorithms in the field of facial at-

ribute prediction. In general, deep facial attribute prediction

ethods can be categorized into two groups: part-based methods

9,10] and holistic methods [11,12] . Part-based methods first locate

he positions of facial attributes and then extract features accord-

ng to obtained location cues for the subsequent attribute predic-
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ion. In contrast, holistic methods learn attribute relationships and

stimate facial attributes from the entire face images without any

dditional localization mechanism. 

In this paper, we focus on holistic facial attribute predic-

ion methods. The insight in this line of work lies in capturing

hared and specific attribute features with customized architec-

ures. Specifically, the customized networks learn shared features

f all attributes across low-level layers. Then, these features flow

o high-level layers, which resort to multiple split branches to pre-

ict attributes with different characteristics. However, in this pro-

ess, only the high-level abstract features at the end of each branch

ake part in the final attribute prediction. The low-level shared in-

ormation at low-level layers might vanish when arriving at the

igh-level layers [12] . Consequently, low-level features may not be

ully explored and utilized. 

Such deficiency of current holistic facial attribute methods

rompts us to reconsider the relationship between the CNN net-

ork architecture and its extracted features at each level. Rather

han capturing features with the commonality and specialty in

eep networks, this paper considers leveraging the hierarchical

tructure of a deep network to learn the locality and globality of

acial attribute features. Specifically, low-level CNN layers capture

https://doi.org/10.1016/j.patcog.2019.107155
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.107155&domain=pdf
mailto:guoyq@dlut.edu.cn
https://doi.org/10.1016/j.patcog.2019.107155
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subtle and detailed face features, corresponding to the attributes

that appear in local face regions, i.e., local facial attributes. As

CNNs go deeper, more global and abstract information is explored

to estimate the attributes that rely on the entire face to make pre-

dictions, i.e., global facial attributes. Therefore, the local and global

natures of facial attributes can be significantly projected to the lo-

cal and global feature representations, which are captured by low-

level and high-level hierarchies of deep networks. 

Taking such correlations between feature hierarchies and at-

tribute characteristics, we design a novel Bi-directional Ladder

Attentive Network (BLAN) to learn hierarchical feature represen-

tations from low-levels to high-levels, correspondingly to pre-

dict facial attributes with the locality and the globality. BLAN is

constructed based on the autoencoder framework with multiple

layer-wise bi-directional connections between its encoder and de-

coder. The encoder and decoder features learned at each level are

fed into the proposed Residual Dual Attention Module (RDAM).

RDAM adaptively interweaves these features to learn complemen-

tary information via residual connections. Besides, it employs dual

channel-wise and spatial-wise attention to jointly learn what and

where to focus, yielding richer attentive feature representations.

To further improve the quality of learned interweaved representa-

tions at each level, Local Mutual Information Maximization (LMIM)

loss is derived for incorporating the locality of input attributes into

high-level representations. After that, multiple hierarchical classi-

fiers operate on learned hierarchical attentive features with max-

imized mutual information to produce global and local decisions.

Then, an adaptive score fusion module is followed to merge these

multiple decisions at each level of BLAN, resulting in a further

boost of the final performance. Extensive experiments on two facial

attribute datasets CelebA and LFWA demonstrate that the proposed

method outperforms state-of-the-art methods. 

The main contributions are summarized as follows. 

• We propose a novel Bi-directional Ladder Attentive Network

(BLAN) which exploits the correlations between low-to-high

hierarchy features and local-to-global facial attributes. Layer-

wise bi-directional connections are designed based on the

autoencoder framework to learn complementary features

from the encoder and the decoder. 
• Residual Dual Attention Module (RDAM) is developed to

jointly learn dual channel-wise and spatial-wise attention

for interweaving the encoder and decoder features. The

residual connection ensures to capture complementary in-

formation. 
• A Local Mutual Information Maximization (LMIM) loss is in-

troduced to maximize the deep mutual information between

input attentive attribute features and learned abstract repre-

sentations, yielding improved features at each hierarchy. 
• We present an adaptive score fusion strategy to merge lo-

cal and global decisions from multiple hierarchical attribute

classifiers for further boosting the performance of facial at-

tribute prediction. Superior experimental results on two fa-

cial attribute datasets CelebA and LFWA demonstrate the ef-

fectiveness of the proposed BLAN. 

2. Related work 

2.1. Facial attribute prediction 

Existing deep facial attribute prediction works can be generally

grouped into two broad categories: part-based methods and holis-

tic methods. We provide a detailed introduction about the two cat-

egories below, respectively. 

Part-based methods extract feature representations from dif-

ferent positions of facial attributes. Each position corresponds to
 single attribute classifier. Hence, the key of part-based meth-

ds exists in the localization mechanism, which further classifies

art-based methods into two groups: separate auxiliary localiza-

ion based methods and end-to-end localization based methods. 

Typically, separate auxiliary localization methods utilize exist-

ng part detectors [ 41 ] or auxiliary localization algorithms to lo-

ate facial attributes in a separate and independent way. Zhang

t al. [9] propose a PANDA model, which draws support from ex-

sting poselet part detectors [13] . Once poselet image patches are

btained, one CNN per poselet is trained to extract features from

ll patches. Kalayeh et al. [14] employ semantic segmentation as a

eparate auxiliary localization scheme to guide the prediction fo-

using on the naturally occurring areas of facial attributes. In con-

rast, Mahbub et al. [15] consider a more straightforward way. They

esort to key points to segment faces into several images patches

irectly. 

However, separated auxiliary localization based methods con-

iderably rely on the accuracies of face detection, facial semantic

egmentation, as well as facial landmark localization [16] . Thus,

nce these localization strategies are imprecise, or landmark an-

otations are unavailable, the performance of facial attribute pre-

iction would be harmed significantly. 

In contrast, end-to-end localization based methods exploit uni-

ed networks that discover position clues and predict attribute

ategories in an end-to-end manner. Liu et al. [17] first propose

 cascaded deep learning framework for joint face localization and

ttribute prediction. Specifically, the cascaded network is made up

f an LNet and an ANet, where LNet locates the entire face regions

nd ANet extracts high-level facial representations from located ar-

as. However, the face regions located by LNet are too coarse to

earn facial attribute related details. In light of this, Ding et al.

18] propose a cascade network to locate the regions that are only

elevant to facial attributes. Specifically, a Face Region Localization

etwork (FRL) is designed to locate attribute positions and gener-

te image patches, where each patch is corresponding to one at-

ribute. Then, a Parts and Whole (PaW) classification network is

ollowed to make a binary classification on each image patch. Re-

ently, Li et al. [10] design an AFFAIR network for learning a hierar-

hy of spatial transformation and predicting facial attributes with-

ut landmarks. 

Nevertheless, end-to-end localization methods might cause re-

undant computations when many attributes might exist in the

ame facial area. Therefore, no matter what localization mecha-

ism is adopted, it is still a challenge to avoid the adverse influ-

nces on subsequent prediction tasks. 

Holistic methods extract features from the entire face images

nd predict facial attributes without any localization mechanism.

hat the most crucial issue that holistic methods concern about

s modeling attribute relationships with customized architectures.

n general, holistic facial attribute prediction networks share in-

ormation across certain low-level layers and further split into

ultiple branches at high-level layers for specific attribute pre-

ictions. Specifically, shared layers ensure to learn general infor-

ation among all attributes, whereas split forks extract attribute-

pecific features. 

There exist two core challenges in holistic methods. One is ap-

ropriately assigning shared and attribute-specific information at

ifferent levels of networks. The other is excavating relationships

mong attributes for learning more discriminative feature repre-

entations [ 42 ]. 

MOON [19] first learns shared high-level features and then pre-

icts multiple attributes simultaneously at the FC layer based on

he 16-layer VGG [20] . Zhong et al. [21] replace high-level CNN

eatures in MOON with mid-level ones for identifying the best rep-

esentation over each attribute. 
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Compared with splitting networks at FC layers, Hand et al.

11] present a Multi-task deep CNN (MCNN), which branches sev-

ral groups out at mid-level layers. Note that these groups are di-

ided manually according to attribute semantics. However, there

xists a problem that shared information from low-level layers

ay vanish after splitting in MCNN. In light of this, Cao et al.

12] rectify MCNN by deriving a Partially Shared structure (PS-

CNN) to learn shared and task-specific representations better. PS-

CNN divides attributes into four groups according to attribute lo-

ations. After that, it trains four corresponding Task-Specific Net-

orks (TSNets) and one Shared Network (SNet) connected via the

artially shared structure. 

Notably, all the above methods design their networks by man-

al, Lu et al. [22] break this limitation and propose an auto-

atically designed compact multi-task deep learning architecture,

hich fully shares features and learns discriminative representa-

ions adaptively. The automatically designed network starts with a

hin multi-layer network. Then, it widens dynamically in a greedy

anner, resulting in a more fast and compact model. 

In summary, through grouping attributes manually according to

emantic or locations [11,12] , or automatically designing networks

n an adaptive manner [22] , attribute relationships can be pro-

ected to the high-level layers of networks for extracting abstract

lobal features. However, the low-level features, which indicate

ore local and detailed context information of facial attributes, are

ot well addressed. More local and subtle features can be signifi-

antly captured by low-level layers, rather than high-level counter-

arts. There is a correspondence between feature representations

aptured by different hierarchies of deep networks and facial at-

ributes with different local or global characteristics. Therefore, in

his paper, we propose BLAN to discover and model such a correla-

ion for yielding appealing facial attribute prediction performance. 

.2. Attention mechanism 

Attention mechanism plays a vital role in improving the perfor-

ance of CNNs in large-scale classification tasks [23,24] . On the

ne hand, attention selects to focus on a salient location with high

ctivations [25] ; On the other hand, attention strengthens the fea-

ure representations of different classification objectives over this

ocation. 

Wang et al. [25] propose a residual attention network to gen-

rate attention-aware features via a stacked encoder-decoder style

ttention module. Hu et al. [24] construct a Squeeze-and-Excitation

SE) block to model the interdependencies between channels of

onvolutional features explicitly. By stacking SE blocks, only min-

mal additional computations bring significant classification per-

ormance improvements. However, the SE block only emphasizes

what’ to focus for inferring the profitable channel attention, the

patial attention that concerns more about ‘where’ to focus is sig-

ificantly ignored. In light of this, Woo et al. [26] design a Convolu-

ional Block Attention Module (CBAM) for exploiting both spatial-

ise and channel-wise attention, resulting in superior performance

ompared with using the single channel-wise attention. Besides,

hu et al. [27] develop a Recurrent Attention Residual (RAR) mod-

le to select a residual component and refine context features from

ifferent depths of the network. RAR introduces residual learn-

ng technique [28] to capture complementary information. In the

eantime, as many original features can be preserved as possible. 

In light of these, we take both spatial-wise and channel-wise

ttention [26] into consideration and develop a novel Residual Dual

ttention Module (RDAM). Specifically, channel-wise attention con-

ributes to capturing the inter-channel relationships of features,

hereas spatial-wise counterpart models the inter-spatial relation-

hips. RDAM links the encoder features and the decoder features at

ach level of BLAN, analogous to a step on the ladder architecture. 
.3. Deep mutual information 

Mutual Information (MI) indicates non-linear dependencies be-

ween random variables. It has been widely applied in the field of

ata science, such as information bottleneck [29] and feature se-

ection [30] . Generally, MI can be formulated with Kullback-Leibler

KL) divergence between the joint distribution of two random vari-

bles ( X and Z ) and the product of their marginals, i.e., I ( X; Z ) =
 KL ( P XZ || P X � P Z ) . Mutual information maximization is a general

epresentation learning function to discover beneficial representa-

ions. Recently, several advances have broken through the limit of

igh dimensional computing difficulty faced by MI, leading to the

urther extension of such a conventional unsupervised representa-

ion objective to deep neural networks. 

Belghazi et al. [31] first introduce Mutual Information Neu-

al Estimation (MINE) working on continuous variables via back-

ropagation in deep neural networks. Further, they prove that

INE performs well when constructing bi-directional generative

odels. Nevertheless, the roles that MI plays in large-scale clas-

ification tasks are not discussed. Taking this point into considera-

ion, Hjelm et al. [32] propose Deep InfoMax (DIM) to incorporate

nowledge about locality and globality of the input to the deep MI

or enhancing the representations for classification. 

Based on DIM, we introduce Local Mutual Information Maxi-

ization (LMIM) loss to restrain the obtained features from con-

aining as much label-related information as possible at each level

f BLAN. By maximizing the deep mutual information, LMIM incor-

orates the input attentive facial attribute features into high-level

bstract representations. In this way, the quality of features can be

mproved, and the performance of attribute prediction would be

oosted. 

In addition, our proposed BLAN bases on the autoencoder

ramework with layer-wise bi-directional hierarchical connections. 

n 2014, Rasmus et al. propose a similar ladder architecture

33] , which has some applications in unsupervised learning and

emi-supervised learning [33,34] . Lateral shortcut connections are

dopted at every level of the model from the encoder to the de-

oder, i.e., single directional connections. The intuition behind this

esign is utilizing the encoder features to strength the reconstruc-

ion. Despite sharing the analogous name, our proposed network

ossesses the entirely distinct architecture and motivation. The

roposed BLAN replaces the single directional connections with

he bi-directional counterparts. Moreover, the features of both the

ncoder and the decoder contain facial attribute related details.

hus, they are equally treated for the subsequent attribute predic-

ion task in our BLAN. 

. Bi-directional ladder attentive network 

Given facial attribute images, the proposed BLAN first learns

ierarchical feature representations from low-level layers to high-

evel layers under the autoencoder framework, corresponding to

ocal and global features with the locality and the globality of facial

ttributes. Then, learned representations from both the encoder

nd the decoder at different hierarchies are fed into multiple resid-

al dual attention modules for interweaving more discriminative

ttentive features. Next, these attentive features and the features

t the end of the encoder are taken as inputs to multiple attribute

lassifiers. Under the constraints of proposed local mutual informa-

ion maximization loss, classification loss, and reconstruction loss,

hese classifiers predict corresponding attributes at different lev-

ls and generate multiple decisions. Note that the scores of these

lassifiers are summed to produce another decision. After that, an

daptive score fusion module is adopted to integrate obtained mul-

iple decisions, leading to a further boost of the final performance.
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Fig. 1. The overall architecture of BLAN. 

Table 1 

Configuration of the basic BLAE. 

Layer name Output size Encoder Decoder 

conv 0 128 × 128 7 × 7, 64, stride = 2 

block 1 64 × 64 3 × 3, maxpool, stride = 2 

[
3 × 3 , 64 

3 × 3 , 64 

]
× 3 [

3 × 3 , 64 

3 × 3 , 64 

]
× 3 upsample, scale factor = 2 

block 2 32 × 32 

[
3 × 3 , 128 

3 × 3 , 128 

]
× 4 , stride = 2 

[
3 × 3 , 128 

3 × 3 , 128 

]
× 4 

upsample, scale factor = 2 

block 3 16 × 16 
[

3 × 3 , 256 

3 × 3 , 256 

]
× 6 , stride = 2 

[
3 × 3 , 256 

3 × 3 , 256 

]
× 6 

upsample, scale factor = 2 

block 4 8 × 8 

[
3 × 3 , 512 

3 × 3 , 512 

]
× 3 , stride = 2 - 
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We provide the overall architecture of the proposed BLAN in

Fig. 1 . BLAN consists of three main parts: the basic bi-directional

ladder autoencoder BLAE, the residual dual attention modules

RDAM i ( i = 1 , . . . , K − 1 ; K = 4 ) , and the attribute classifiers AC i 

( i = 1 , . . . , K; K = 4 ) with the adaptive score fusion module SF. In

Fig. 1 , the top half part with solid boxes denotes the encoder part,

while the bottom half part with dashed boxes indicates the de-

coder part. The two parts jointly comprise the basic autoencoder

framework BLAE. The adaptive score fusion module accepts the de-

cisions represented by s i ( i = 1 , . . . , K; K = 4 ) fr om K attribute clas-

sifiers for yielding the final prediction results. The details of each

part are described respectively as below. 

3.1. Basic bi-directional ladder autoencoder 

BLAE contains an encoder, a decoder, and the bi-directional

connections between them at different levels. The encoder employs

Resnet-34 as the primary skeleton, where the last two layers are

removed since they are customized for the ImageNet classification

[28] . The decoder is a mirrored version of the encoder, but the last

residual block of the encoder does not participate in the mirror op-

eration. Upsampling layers are utilized to increase resolutions with

scale factor 2. Hence, the convolutional residual blocks do not per-

form any resolution reduction. We provide the detailed configu-

ration of BLAE in Table 1 . Taking 3-channel RGB images with the

resolution 256 × 256 as inputs, BLAE generates 64 × 64, 32 × 32,

16 × 16, and 8 × 8 four types of dimension features via block i 
(i = 1 , . . . , K; K = 4) . These outputs of internal convolutional blocks
re pulled out at each level of the hierarchy for downstream mul-

iple attention modules and attribute classifiers. Besides, BLAE is a

upervised autoencoder that jointly classifies facial attributes and

econstructs input images. Consequently, the outputs of the de-

oder are 3-channel reconstructed RGB images, which share the

ame resolution with inputs. This network architecture design is

ainly based on the following two considerations. 

First, the decoder is introduced to enhance feature representa-

ions. During the process of the reconstruction, plenty of facial de-

ails can be fully captured to cater for lower reconstruction error.

herefore, taking the decoder features into account brings impor-

ant complementary information, which might be ignored or van-

shed with the single encoder features. Besides, in terms of the re-

onstruction error, it can be taken as a specific form of regular-

zation to some extent, leading to guaranteed generalization and

niform stability [35] . It has been proved theoretically and empir-

cally that considering the reconstruction error never damages the

erformance of classification tasks and significantly improves the

eneralization ability [35] . 

Therefore, the reconstruction loss l REC from the decoder is cal-

ulated by 

 REC = ‖ ̃

 x − x ‖ 

2 
2 . (1)

We utilize the Mean Square Error (MSE) function in Eq. (1) to

easure the distance between the reconstruction image ˜ x from the

ecoder and the original image x , where ‖ · ‖ 2 indicates the L 2 -

orm. 
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Fig. 2. The proposed residual dual attention module. 
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Table 2 

Configurations of attribute classifiers. 

Classifiers Layers Configurations Output Size 

AC 1 Conv-BN-Relu 1 5 × 5, stride = 4 32 × 16 × 16 

Conv-BN-Relu 2 1 × 1, stride = 1 16 × 16 × 16 

AC 2 Conv-BN-Relu 1 3 × 3, stride = 2 64 × 16 × 16 

Conv-BN-Relu 2 1 × 1, stride = 1 16 × 16 × 16 

AC 3 Conv-BN-Relu 1 3 × 3, stride = 2 128 × 8 × 8 

Conv-BN-Relu 2 1 × 1, stride = 1 64 × 8 × 8 

AC 4 Conv-BN-Relu 1 3 × 3, stride = 2 256 × 4 × 4 

Conv-BN-Relu 2 1 × 1, stride = 1 256 × 4 × 4 
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Second, pulling out features from both the encoder and the de-

oder bi-directionally at each level of BLAE helps to learn hierar-

hical representations. The motivation behind this design is that

ifferent layers of deep CNNs can learn distinct characteristics of

eatures. Specifically, deeper layers learn abstract global context in-

ormation, while detailed local context features can be captured

t shallower layers. In terms of BLAE, we predict local facial at-

ributes at low-level layers and estimate global facial attributes at

igh-level layers adaptively. There is no need to partition attribute

roups according to globality and locality manually. At each level

f the hierarchy, all attributes are classified so that we can select

he best prediction for each one by the following ensemble strat-

gy. 

.2. Residual dual attention module 

We design an attention mechanism, termed Residual Dual At-

ention Module (RDAM), to learn attentive features from both the

ncoder and the decoder bi-directionally at each level of BLAN. To

daptively integrate more discriminative representations, features

rom block 1 ~ block 4 in Table 1 are propagated to correspond-

ng attention modules RDAM i ( i = 1 , . . . , K − 1 ; K = 4 ) . Therefore,

DAM modules become the steps on the ladder architecture of

LAN. All these attention modules share the same architecture but

istinct parameter configurations. The overall architecture of RDAM

s provided in Fig. 2 . 

Given the encoder feature F enc and the decoder feature F dec for

ach RDAM, they are first concatenated and fed into a convolu-

ional layer. Then, the channel-wise attention and spatial-wise at-

ention are executed dually in a sequential manner to model inter-

hannel and inter-spatial relationships of features, respectively. Af-

er that, the residual learning technique is introduced by adding

he encoder features to maintain the original features for generat-

ng the ultimate attentive features. Note that in Fig. 2 , we adopt

he sequential connection configuration of the two types of atten-

ion, although they can exchange the order or be paralleled. 

In terms of the channel-wise attention, it concerns what is

eaningful in the given image by taking each channel of a fea-

ure map as a feature detector. Besides, the average pooling and

he max pooling are utilized simultaneously via a shared network,

here the former captures the extent of the target attribute and

he latter congregates clues related to discriminative attribute fea-

ures. Woo et al. [26] have proved that such joint utility of the two

ooling operations performs better than using each independently.

Formulaically, let F conv denote the output of the convolutional

ayer in Fig. 2 , and MLP denotes the Multi-Layer Perceptron (MLP)

ith one hidden layer. Then, the output of channel-wise attention

odule can be written as 

 chn = F conv � σ ( MLP ( AvgP ool ( F conv ) ) ) 

+ MLP ( MaxP ool ( F conv ) ) . (2) 

Different from the channel-wise attention, spatial-wise atten-

ion captures where the informative regions exist. The average

ooling and max pooling are also adopted whose outputs are con-

atenated and convolved via a convolution layer, denoted as Conv .
F 
herefore, the output of spatial-wise attention module can be writ-

en as 

 spt = F chn � σ ( Con v F ( [ A v gP ool ( F chn ) ; MaxP ool ( F chn ) ] ) ) . (3) 

ote that in both Eqs. (2) and (3) , σ ( · ) indicates the sigmoid func-

ion and � denotes the element-wise multiplication. 

As a result, the output of each RDAM can be denoted as F at t n =
 spt + F enc , where the residual operation is adopted to preserve as

any original encoder features as possible. Then, the obtained F attn 

s fed into an attribute classifier for generating corresponding pre-

iction scores. 

.3. Attribute classifiers 

Attribute classifiers AC i ( i = 1 , . . . , K; K = 4 ) of BLAN accept fea-

ures from each attention module RDAM i ( i = 1 , . . . , K − 1 ; K = 4 ) ,

s well as the feature map at the end of the pipeline of

he encoder, i.e., the output of block 4 , respectively. Each AC i 

( i = 1 , . . . , K; K = 4 ) yields the prediction scores for all attributes.

hen, an adaptive score fusion module is followed to merge these

cores from all hierarchies for producing the final result. 

AC i ( i = 1 , . . . , K; K = 4 ) is made up of two Conv-BN-ReLU units

nd two fully connection (FC) layers. There are no max pooling

ayers so that the downsampling operations are implemented by

onvolutional layers. After passing Conv-BN-ReLU units, the sizes

f feature maps reduce by half, and the numbers of channels have

ifferent scale reductions for different classifiers. The detailed con-

gurations of all attribute classifiers are listed in Table 2 . Then, the

utputs of Conv-BN-ReLU units of all classifiers are fed into two

C layers, denoted as FC 1 and FC 2 with the dropout operation be-

ween them for reducing the overfitting. FC 1 reduces the dimen-

ionality of feature maps and projects them into 512-dimension

eature vectors. FC 2 outputs 2 N prediction scores, where N denotes

he number of attributes. Note that each attribute implements the

inary classification in FC 2 . 

We adopt the categorical cross entropy function with the soft-

ax operation to calculate the classification loss l ( 
i ) 

CLS 
for each AC i 

( i = 1 , . . . , K; K = 4 ) , which can be written as 

 

( i ) 
CLS 

= 

N ∑ 

j=1 

sof tmax 
(
s j , y j 

)
, (4) 

here s j and y j are the prediction score and corresponding at-

ribute label of the j th facial attribute, respectively. 
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3.3.1. Local mutual information maximization 

As mentioned above, deep mutual information estimation Deep

InfoMax (DIM) [32] contributes to learning profitable representa-

tions for downstream tasks. Typically, DIM has two maximization

objectives: global DIM and local DIM. Since facial attributes repre-

sent subtle details of faces that exist in local parts of images, the

average MI maximization between the high-level representations

and local regions of the inputs would benefit the attribute classifi-

cation task. This constraint encourages the learned representations

to involve as much label-related information of local image patches

as possible, resulting in high-quality and profitable features. 

In light of this, we introduce the local version of Deep Info-

Max and construct Local Mutual Information Maximization (LMIM)

loss. By incorporating the locality of the input attribute features

into high-level representations at each level of BLAN, the quality

of feature representations customized for facial attribute prediction

can be significantly improved. 

Given a face image, the basic BLAE first takes it as the in-

put, and the output of each block i is fed into an RDAM i at a

certain level. Then, the obtained feature map F at t n i 
at this hierar-

chy inputs a corresponding attribute classifier AC i , yielding a 512-

dimension feature vector T i at each FC 1 layer. After that, we utilize

the most straightforward concat-and-convolve architecture accord-

ing to [32] to construct LMIM loss. Two steps are executed: (1)

concatenating the replicated T i with the feature map F at t n i 
at every

location; (2) distinguishing the ‘real’ pair [ F at t n i 
; T i ] with the ‘fake’

one through the binary cross entropy loss. Note that the ‘fake’ pair

[ F at t n i 

′ ; T i ] is produced by pairing the feature vector with a feature

map from another image. 

Formulaically, let I ϕ ( F at t n i 
; T i ) denote the MI between the fea-

ture map F at t n i 
:= { F at t n i 

(u ) } M×M 

u =1 
and the global feature vector T i ,

where ϕ is the hyperparameter of the attribute classifier. Therefore,

local mutual information maximization loss l (i ) 
LMIM 

can be written as

l ( 
i ) 

LMIM 

= arg max 
ϕ 

1 

M 

2 

M ∑ 

u =1 

I ϕ 
(
F at t n i 

( u ) ; T i 
)
. (5)

Note that there are many methods for computing the mutual

information I ϕ ( F at t n i 
u ; T i ) , such as Jensen-Shannon MI estimator

[36] and Noise-Contrastive Estimation (NCE) [37,38] . In this paper,

in terms of facial attribute prediction, we calculate the binary cross

entropy loss of the ‘real’ [ F at t n i 
; T i ] and ‘fake’ [ F at t n i 

′ ; T i ] pairs as the

estimation of MI. 

Consequently, MI maximization constraint models the relation-

ships between local attribute feature maps and high-level abstract

representations at each hierarchy, resulting in high-quality features

for achieving promising facial attribute prediction performance. 

3.3.2. Adaptive score fusion 

Score-level fusion strategy aims to merge scores from multiple

predictors so that an ensemble of networks can be implemented at

the score level. As a result, the final prediction performance would

be significantly enhanced. Remarkably, multiple classifiers in BLAN

provide us an opportunity to further boost the performance by

means of the score fusion strategy. 

After obtaining multiple prediction scores from all attribute

classifiers, we derive an adaptive score fusion strategy to

combine local and global decisions from all levels of BLAN.

Specifically, given scores s i ∈ R 

N×1 from attribute classifiers AC i 

( i = 1 , . . . , K; K = 4 ) , we first sum them up as another basic score,

denoted as 
∑ 

s i ∈ R 

N×1 . Then, the final facial attribute prediction

result p ∈ R 

N×1 can be computed by 

p = sof tmax 

[ 
W s �

(
s i , 

∑ 

s i 

)] 
, (6)
here ( ·, ·) and � denote the operations of matrix concatenation

nd multiplication, respectively. Instead of setting in advance ar-

ificially, W s ∈ R 

(K+1) ×N is the weight matrix learned during the

raining process in an adaptive manner. We also adopt the cate-

orical cross entropy to compute the fused score loss l SF , which

an be denoted as 

 SF = 

N ∑ 

j=1 

sof tmax 
(
p j , y j 

)
. (7)

ere, p j is the j th attribute score from the adaptive score fusion

odule. 

In summary, the total loss to be optimized in BLAN is 

 T OT = 

K ∑ 

i =1 

(
l ( 

i ) 
CLS 

+ αl ( 
i ) 

LMIM 

)
+ β l REC + γ l SF , (8)

here α, β , and γ are hyperparameters for weighting local mutual

nformation maximization loss l LMIM 

, reconstruction loss l REC , and

daptive score fusion loss l SF , respectively. 

. Experiments 

In this section, we systemically conduct experiments on two fa-

ial attribute datasets: CelebA and LFWA [17] . First, we introduce

heir descriptions and test protocols. Second, the implementation

etails involving training schemes, hyperparameter configurations,

nd attention settings are provided. Third, we compare and dis-

uss our BLAN with state-of-the-art methods. Then, we experimen-

ally illustrate the effectiveness of the hierarchical features learned

y BLAN. Finally, the in-depth analysis of the proposed model is

erformed from the perspectives of ablative study, hyperparame-

er sensitivity, generalization ability, and model complexity, respec-

ively. 

.1. Datasets and protocols 

Celeb-Faces Attribute Dataset (CelebA) is a large-scale facial

ttribute dataset with large pose variations and background clutter.

t is collected by labeling images selected from Celeb-Faces [39] .

here are total 10,177 identities, 202,599 face images with 40 bi-

ary attribute annotations per image. Following the standard pro-

ocol in [17] , CelebA is partitioned into three parts: 160,0 0 0 images

f first 80 0 0 identities for training, 20,0 0 0 images of another 10 0 0

dentities for validation, and the rest for testing. 

Labeled Faces in the Wild Attribute Dataset (LFWA) consists

f 13,233 images from 5749 people collected via news sources on-

ine. Specifically, there are 1680 people with two or more images.

ach image shares the same annotated 40 attributes as CelebA [17] .

s for the protocol, half samples (6,263 images) are for training

nd the remaining half for testing. Besides, we adopt the classifi-

ation accuracy as the quantitative metric for all experiments. 

.2. Implementation details 

We use the Pytorch platform and conduct all experiments on

he NVIDIA Titan X GPU. In our experiments, the number of at-

ributes N is set to 40, and the number of attribute classifiers K is

et to 4. All input images are resized to 256 × 256 for CelebA and

24 × 224 for LFWA, following [12] . The Adam algorithm with the

ini-batch size of 64, is adopted to optimize the proposed BLAN.

oreover, we set the learning rate as 0.001 with the linear decay

y 10. For the adaptive score fusion module, we adopt the SGD al-

orithm with the learning rate of 0.0 0 01 and the same mini-batch

ize. 
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Table 3 

Classification accuracy (%) comparisons on CelebA and LFWA. 

Methods CelebA LFWA 

PANDA [9] 85.00 81.00 

LNet + ANet [17] 87.30 84.00 

Mid-level CNN Features [21] 89.80 85.90 

MOON [19] 90.94 –

SOMP-branch-32 [22] 90.74 –

MCNN [11] 91.26 86.27 

PaW [18] 91.23 –

AFFAIR [10] 91.45 86.31 

BLAN (w/o OS) 91.73 86.09 

BLAN (w/ OS) 91.80 87.13 
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Training schemes. During the training, we propose an overfit-

ing suppression scheme to prevent our BLAN getting into the ad-

erse overfitting problem. Specifically, the proposed scheme con-

ains three strategies: (1) Insert a dropout layer with dropout prob-

bility of 0.5 between two FC layers in each attribute classifier

21] ; (2) Initialize the encoder of BLAN with the weights from

esnet-34, which is pretrained on the large-scale ImageNet dataset

or the classification task [28] ; Note that for the remaining mod-

les of BLAN, including the decoder, we impose the same weight

nitialization scheme as in [28] and train them from scratch. (3)

andomly mirror training images for further data augmentation.

esides, we also train our BLAN from scratch without imposing any

verfitting suppression strategy. In the following experiments, such

wo different training schemes are denoted as ‘w/ OS’ and ‘w/o OS’,

espectively. 

Hyperparameter configurations. We empirically set the hyper-

arameters α, β , and γ in Eq. (8) . The principle is all the loss func-

ions are optimized in a balanced way to avoid model biasing any

f them. Note that the weight of classification loss l CLS is always

et as 1. This configuration ensures that attribute classification is

he most primary and essential task. Moreover, we set γ as 1 due

o its indistinctive effect on the performance. As for α and β , we

djust them within the range of {1, 0.1, 0.01}. 

Attention settings. Since our attention module RDAM contains

oth channel-wise attention and spatial-wise attention, we adopt

hree attention settings according to different connection ways, i.e.,

equential channel-wise attention and spatial-wise attention, its

ariant version by exchanging the order, and parallel channel-wise

ttention and spatial-wise attention. 

.3. Comparison with state-of-the-art methods 

We list the average classification accuracies of our proposed

LAN over 40 facial attributes and compare them with state-of-

he-art methods in Table 3 . Comparative methods include: PANDA

9] , LNet + ANet [17] , Mid-level CNN Features [21] , MOON [19] ,

OMP-branch-32 [22] , MCNN [11] , PaW [18] , and AFFAIR [10] . The

est results are shown in bold. 

As shown in Table 3 , our proposed BLAN outperforms state-

f-the-art methods with and without the overfitting suppres-

ion scheme. Compared with part-based methods, i.e., PANDA,

Net+ANet, PaW, and AFFAIR, first, our BLAN has the largest

ncrease by 6.8% when compared with PANDA. Then, although

Net+ANet and PaW methods pay more attention to detailed at-

ribute areas, they are still beaten by the proposed BLAN. That is

ecause the suboptimal performance of localization mechanisms

ight cause adverse effects on the downstream attribute predic-

ion task. In contrast, BLAN concentrates more on exploring and

tilizing the correspondence between low-high-level features and

ocal-global attributes. No auxiliary localization networks are built

n this process. As a result, the negative influences of upstream

asks can be avoided. 
In contrast to AFFAIR, our BLAN (w/o OS) yields comparable re-

ults over LFWA dataset. This is because AFFAIR introduces prior

nformation by dividing 40 facial attributes into 8 groups according

o attribute locations. However, after imposing the overfitting sup-

ression strategies, our BLAN (w/ OS) improves the classification

ccuracy by about 0.8%. We attribute this result to BLAN’s adaptive

earning mechanism without any human knowledge. Thus, better

eneralization ability can be achieved. 

Compared with holistic methods, i.e., Mid-level CNN Features,

OON, SMOP-branch-32, and MCNN, the proposed BLAN achieves

ppealing improvements none the less. In contrast to Mid-level

NN Features, the hierarchical attentive features learned by BLAN

erform better in identifying facial attributes. Since mid-level

NN features treat local and global features indiscriminately, this

ethod predicts local and global attributes at the same network

evel. This limitation becomes the main reason of its inferior per-

ormance. Consequently, using single low-level or high-level fea-

ures would impair the accuracy of attribute prediction. At this

oint, the advantage of BLAN’s hierarchical representations can be

ighlighted. Besides, BLAN also outperforms the automatically de-

igned SMOP-branch-32, as SMOP-branch-32 pursues fast model

peed and compact compression at the expense of prediction accu-

acy. When comparing with MOON and MCNN that both consider

ttribute relationships, our BLAN has higher performance with dif-

erent extents. Analogous to AFFAIR, MCNN manually partitions 40

acial attributes into 9 groups according to locations. However, the

erformance of attribute prediction might be over-restricted by

urrent groups, especially when different individuals may give in-

onsistent grouping results. This result emphasizes one more the

ignificant contribution of BLAN’s adaptive learning for enhancing

he model generalization. 

.4. Effectiveness of hierarchical learning 

BLAN employs multiple attribute classifiers to make predictions,

f which each learn corresponding local or global attribute fea-

ures. To demonstrate the effectiveness of such hierarchical learn-

ng, we report the classification accuracies of attribute classifiers

C 1 ~ AC 4 over several facial attributes. 

As shown in Fig. 3 , on the whole, different attribute classifiers

re dedicated to predicting facial attributes with different charac-

eristics. For an arbitrary attribute, different classifiers have distinct

erformance. The top three subgraphs in Fig. 3 represent the pre-

iction performance of facial attributes (a) Bags Under Eyes, (b) Big

ose, and (c) Big Lips, respectively. We can observe that the best

rediction accuracies are achieved over attribute classifiers AC 1 ,

C 2 , AC 3 , respectively. That is to say, Bags Under Eyes can be well

redicted only with the shallowest local features whereas Big Nose

nd Big Lips resort to mid-level features of BLAN. In contrast, hair

olor attributes (d) Black Hair, (e) Blond Hair, and (f) Brown Hair,

sk for abstract global features at the highest level, as shown in

he middle row of Fig. 3 . Since hair colors represent high-level se-

antic and context information captured well by high hierarchies,

C 4 takes the heaviest responsibility of predicting these attributes.

For attributes (g) Oval Face and (h) Young, researchers might

egard them as global attributes according to human knowledge.

hat means they should be estimated through high-level abstract

eatures. However, our experiments in the bottom subfigures of

ig. 3 illustrate that the two attributes can be well predicted with

id-level features by AC 3 , even low-level features by AC 2 . Further-

ore, (i) Arched Eyebrows might be clustered into local attribute

roups by the artificial partition. That means this attribute should

ave been predicted with low-level features. However, our BLAN

omes to the exact opposite conclusion, that is, (i) Arched Eye-

rows requires high-level features to make an accurate prediction

ia AC . 
4 
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Fig. 3. The illustration of the effectiveness of BLAN’s hierarchical learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Ablative analysis on CelebA. 

Index Baseline (Enc) LMIM Dec RDAM SF ACC (%) 

1 
√ 

88.89 

2 
√ √ 

90.14 

3 
√ √ 

89.83 

4 
√ √ √ 

90.93 

5 
√ √ √ √ 

91.51 

6 
√ √ √ √ √ 

91.73 
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f  

s  

i  

D  
In summary, through hierarchical learning, BLAN adaptively

captures attribute features with different local and global charac-

teristics. As a result, each attribute classifier accepts corresponding

representations at a certain level for yielding appealing prediction

performance. 

4.5. In-depth model analysis 

4.5.1. Ablative analysis 

We perform adequate ablative experiments over different com-

ponent variants to explore the contribution of each part in BLAN.

The detailed results are reported in Table 4 . We decompose BLAN

into five components: (1) Baseline (Enc): the encoder, (2) LMIM:

local mutual information maximization loss, (3) Dec: the de-

coder, (4) RDAM: residual dual attention module, (5) SF: adaptive

score fusion module. Note that (1) + (3) = BLAE, i.e., the basic bi-

directional ladder autoencoder. Index 1 ~ 5 denote different com-

binations of the above five components, while index 6 indicates

the overall model BLAN. 
As shown in Table 4 , first, we take the performance of the

ncoder as the baseline, obtaining 88.89% classification accuracy.

hen, we verify the effect of LMIM loss in index 2. It can be ob-

erved that 1.25% performance improvement demonstrates the ef-

ectiveness of the proposed mutual information maximization con-

traint. After that, all attributes are estimated over the decoder in

ndex 3 to illustrate its contribution. We can observe that Enc and

ec have comparable performance, although Dec is a little weaker
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Table 5 

Classification accuracy (%) on LFWA with different attention settings. 

Attention settings w/o OS w/ OS 

Sequential Chn-Spt 86.09 87.03 

Spt-Chn 86.24 86.96 

Parallel Chn � Spt 86.30 86.74 
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Table 6 

Classification accuracy (%) on LFWA with different hyperparameters. 

Hyperparameters 

α for l LMIM 

1 0.1 0.01 

β for l REC 1 86.84 86.91 86.97 

0.1 87.07 87.13 87.06 

0.01 86.93 87.03 86.84 
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han Enc. On the one hand, these results manifest that both Enc

nd Dec are capable of learning hierarchical feature representa-

ions; On the other hand, a small amount of information loss dur-

ng the reconstruction would slightly hamper the decoder’s perfor-

ance. Nevertheless, the decoder still significantly serves as the

uxiliary and complementary component of the encoder for yield-

ng hierarchical reconstruction representations. 

Combining Enc with Dec, we test the performance of the ba-

ic BLAE with LMIM constraint in index 4. It improves nearly 1.1%

ccuracy compared with the single Enc and the single Dec. We at-

ribute this result to BLAN’s layer-wise bi-directional connections

t different levels. Note that BLAE only simply concatenates the

eatures from Enc and Dec. In contrast, the proposed RDAM inter-

eaves the two types of features through the channel-wise atten-

ion and the spatial-wise attention and enhances the performance

p to 91.51% in index 5. At last, multiple classifiers of BLAN create

 favorable condition for the proposed SF module to yield the best

erformance in index 6. 

Besides, to illustrate the effects of different attention connection

ays inside RDAM, we conduct corresponding experiments with

he whole BLAN model over LFWA dataset. All the experiments

onsider three attention settings (i.e., sequential channel-wise at-

ention and spatial-wise attention (Chn-Spt), its order-exchanged

ersion (Spt-Chn), and parallel variant (Chn � Spt)) under two sit-

ations (i.e., w/o OS and w/ OS). 

As shown in Table 5 , Chn-Spt mechanism w/o OS achieves the

est performance. Besides, its variant Spt-Chn yields the compa-

able result with the parallel setting Chn � Spt. Nevertheless, the

erformance of the two sequential connection settings is not much

ifferent. That means the order of channel-wise attention and

patial-wise attention hardly affects the attribute prediction per-

ormance. Moreover, there is an interaction between channel-wise

ttention and spatial-wise attention. The former discovers what is

eaningful in the given facial attribute images, whereas the lat-

er explores where the meaningful parts of attribute images exist.

e attribute the inferior performance of the parallel setting to its

nadequate interaction relationship modeling. 

In contrast, when no overfitting suppression strategies are im-

osed, Chn-Spt scheme produces the poorer performance, whereas

ts variant Spt-Chn and parallel version Chn � Spt show compa-

able results. We believe such experimental results are closely re-

ated to the random network initialization, which makes the pre-

iction performance slightly sensitive to different configurations. 

In conclusion, different attention settings of RDAM have only

light effects on the facial attribute prediction performance. Hence,

n following experiments, we adopt sequential Chn-Spt attention

etting for all RDAM modules due to its superior performance with

he overfitting suppression scheme. 

.5.2. Hyperparameter sensitivity analysis 

We test the hyperparameter sensitivity of BLAN over LFWA

ataset when α and β vary in the range of {1, 0.1, 0.01}. All the ex-

erimental results in Table 6 are obtained with the proposed over-

tting suppression scheme. 

As shown in Table 6 , the best hyperparameter configuration is

= β = 0 . 1 . For fixed β = 1 , when α is reduced from 1 to 0.01,

he classification accuracy raises gradually from 86.84% to 86.97%,

btaining about 0.1% increase. Then, for fixed β = 0 . 1 and β =
 . 01 , the highest classification accuracy yields when α = 0 . 1 . Since

MIM loss contributes to incorporating the low-level locality of fa-

ial attribute features into the high-level abstract representations,

he hyperparameter α reflects the ability of this feature incorpora-

ion. If α is too large, excessive incorporations make it difficult to

istinguish between low-level and high-level features, which runs

ounter to BLAN’s design principle. When α becomes too small, the

ocal features at low-levels cannot be well merged into high-level

epresentations. In this way, the contribution of LMIM loss would

e significantly limited. In contrast, for fixed α, all the best accura-

ies produce when β = 0 . 1 . That means, if reducing β to 0.01, re-

onstructed features from the decoder might have limited impact

n the attribute prediction. When increasing β to 1, the overall op-

imization might not balance well among multiple losses. 

In summary, when α and β vary within the range of {1, 0.1,

.01}, the difference between the highest (87.13%) and the lowest

86.84%) results is approximate 0.3%. Therefore, we believe that fa-

ial attribute prediction results of BLAN are hardly sensitive to both

and β within specific ranges. 

.5.3. Model generalization analysis 

The best performance of BLAN over each attribute on CelebA

nd LFWA is reported in Table 7 . Note that LFWA has much poorer

erformance than CelebA. That may because that LFWA dataset has

ewer training images and more complex backgrounds, leading to

ore severe overfitting. In light of this, we conduct a series of ex-

eriments to illustrate the generalization ability of the proposed

LAN. Corresponding results are reported in Tables 8 and 9 . 

First, we consider the effects of different train/test propor-

ions on LFWA dataset. As shown in Table 8 , two divisions of

ataset are tested, i.e., 80%:10% and 50%:50%. The former follows

he same train/test proportion as CelebA, whereas the latter is the

ommonly-used test protocol of LFWA dataset as we mentioned in

ection 4.1 . All the experiments are conducted under two situa-

ions: w/ OS and w/o OS. 

We can observe that overfitting indeed hampers the perfor-

ance of facial attribute prediction, no matter what train/test pro-

ortions are provided. Furthermore, under the 50%:50% train/test

roportion, the classification accuracy on LFWA dataset experi-

nces about 1% increase. This result significantly reflects the effec-

iveness of our proposed overfitting suppression scheme. On the

ne hand, adding dropout layers is a beneficial measure to reduce

he overfitting. By randomly dropping units in each training batch,

LAN would not simply fit input samples. On the other hand, com-

ared with training from scratch with random weights, BLAN ini-

ialized by the weights of a pretrained model would show better

eneralization ability and faster training speed [22] , which mitigate

he adverse effect caused by insufficient training data [40] . 

Besides, the 80%:10% train/test proportion shows better per-

ormance compared with the 50%:50% partition, whether or not

he overfitting suppression scheme is imposed. That means more

raining data can alleviate the overfitting problem to some extent.

owever, under the 80%:10% partition, our overfitting suppression

trategies only improve approximate 0.4% classification accuracy.

hat is because more training data limits the function of over-

tting suppression strategies. The same conclusion can be drawn
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Table 7 

Classification accuracy (%) of BLAN on CelebA and LFWA over 40 facial attributes. 

Attributes CelebA LFWA Attributes CelebA LFWA 

5 o’clock Shadow 95.18 79.42 Male 98.32 94.24 

Arched Eyebrows 84.74 83.07 Mouth Slightly Open 94.22 83.53 

Attractive 83.25 80.94 Mustache 96.99 93.78 

Bags Under Eyes 86.11 84.04 Narrow Eyes 87.78 83.44 

Bald 99.02 92.85 No Beard 96.46 83.72 

Bangs 96.26 91.26 Oval Face 76.86 78.24 

Big Lips 72.59 80.45 Pale Skin 97.25 91.74 

Big Nose 85.21 84.91 Pointy Nose 78.02 84.75 

Black Hair 90.49 92.65 Receding Hairline 93.99 87.33 

Blond Hair 96.27 97.57 Rosy Cheeks 95.36 87.56 

Blurry 96.37 87.06 Sideburns 98.04 83.53 

Brown Hair 89.79 82.66 Smiling 93.19 91.70 

Bushy Eyebrows 93.08 86.25 Straight Hair 84.65 82.15 

Chubby 95.88 77.37 Wavy Hair 85.35 82.12 

Double Chin 96.58 82.95 Earrings 90.93 95.04 

Eyeglasses 99.70 93.02 Hat 99.15 90.96 

Goatee 97.69 84.64 Lipstick 94.34 95.06 

Gray Hair 98.35 89.22 Necklace 88.16 90.35 

Heavy Makeup 92.04 95.92 Necktie 97.20 83.91 

High Cheekbones 88.13 88.95 Young 89.06 86.64 

Average 91.80 87.13 

Table 8 

Train/Test proportions tests on LFWA. 

Train/Test Proportions 50% : 50% 80% : 10% 

w/o OS 86.09 87.60 

w/ OS 87.03 88.18 

Table 9 

Cross-dataset evaluation. 

OS Train/Test LFWA test CelebA test 

w/o 

OS 

LFWA train 86.09 78.55 

CelebA train 73.34 91.73 

w/ 

OS 

LFWA train 87.13 78.86 

CelebA train 73.69 91.80 
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Table 10 

Comparisons of accuracy, speed and parameters on CelebA test set. 

Methods Accuracy(%) Test Speed (ms) Parameters (millions) 

MOON [19] 90.94 33 119.73 

SOMP-branch-32 [22] 90.74 9.6 1.49 

PaW [18] 91.07 – 19 

BLAN 91.81 29.42 38.34 
from the results in the last two rows of Table 3 . The performance

on CelebA dataset does not see much improvement with the pro-

posed overfitting suppression scheme. Due to CelebA’s relatively

sufficient training data, overfitting is no longer the main limitation

of the model performance. In summary, the smaller the training

data is, the model is prone to overfitting easier, and the proposed

overfitting suppression strategies would make a more significant

difference. 

Second, we evaluate the facial attribute prediction performance

cross two datasets in Table 9 (w/ and w/o OS) to further demon-

strate BLAN’s generalization. Two cases is tested: (1) all LFWA im-

ages for training and CelebA test set for testing; (2) CelebA train

set for training and LFWA test set for testing. 

We can observe that training on a dataset and testing on the

other dataset indeed significantly hamper the performance of fa-

cial attribute prediction (declining 12.94% for CelebA test set and

13.44% for LFWA test set even with the overfitting suppression

scheme). This is because there is a domain gap between the two

datasets. Even labeled with the same types of facial attributes,

the distributions of the two datasets do not match to each other

accurately. Besides, more complicated backgrounds of LFWA im-

ages compared with CelebA would hinder the model’s prediction

performance as well. This explains why training over the entire

LFWA and testing on CelebA (w/ OS: 78.86%, w/o OS: 78.55%)

achieves better performance than training on CelebA and testing

on LFWA (w/ OS: 73.69%, w/o OS: 73.34%). Besides, it is observed

that after suppressing the overfitting, the performance over the
ross datasets is improved approximately 0.3% on both CelebA and

FWA, which further illustrates the effectiveness of the proposed

verfitting suppression scheme. 

The generalization ability of BLAN considerably relies on its

odel design. On the one hand, BLAN adopts the adaptive hierar-

hical learning and the attribute relationship modeling strategies,

hich significantly contribute to improving the model generaliza-

ion [12] . Then, the proposed LMIM loss further strengthens the

onnections between low-level features and high-level representa-

ions, leading to further improvement of generalization ability. On

he other hand, rather than learning in the single-label paradigm,

LAN performs multi-attribute joint learning to guarantee its gen-

ralization ability [12] . 

.5.4. Model complexity analysis 

To elaborate the complexity of the proposed BLAN, we compare

t with three state-of-the-art facial attribute prediction methods

rom the perspectives of classification accuracy, test speed per im-

ge, and the number of network parameters. Corresponding results

ver CelebA test set are listed in Table 10 . 

In terms of classification accuracy, our proposed BLAN achieves

he best performance. Compared with MOON, BLAN has faster test

peed and fewer parameters. SOMP-branch-32 sacrifices classifi-

ation accuracy but has the least number of parameters and the

astest test speed due to its automatic network design. Compared

ith this method, BLAN has around 1% accuracy improvement but

hree times slower. In contrast to Paw, BLAN has twice as many pa-

ameters but about 0.8% boost. We believe this is acceptable since

LAN costs massive computations at both low levels and high lev-

ls for capturing local and global attribute feature representations. 

In conclusion, BLAN contains more submodules to explore the

orrelations between feature hierarchies and attribute characteris-

ics. That means BLAN indeed uses more computations. Neverthe-
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ess, its test speed of 29.42 ms can cater to the general real-time

omputation requirements. 

. Conclusion and future works 

In this paper, we study the facial attribute prediction prob-

em by exploiting the correlations between hierarchical features

nd attributes with the locality and the globality characteristics.

e have proposed a novel Bi-directional Ladder Attentive Network

BLAN) to learn hierarchical representations at different levels of

n autoencoder framework. Layer-wise bi-directional connections

etween the encoder and the decoder ensure to capture richer

ocal and global attribute representations by merging the origi-

al features and the reconstruction features. The designed Resid-

al Dual Attention Module (RDAM) shows the excellent ability in

nterweaving features from the channel level and the spatial level

or learning more discriminative representations. Besides, the de-

ived Local Mutual Information Maximization (LMIM) loss further

ncorporates the locality of the input attribute features to the high-

evel representations and produces high-quality features. Mean-

hile, the proposed adaptive score fusion module performs well

n merging multiple global and local decisions from all hierarchies

or further boosting the performance. Extensive experiments on

elebA and LFWA verify the promise of the proposed BLAN. 

BLAN excels at capturing the correlations between feature hier-

rchies and underlying task characteristics. This network architec-

ure makes it adaptive to other multi-task issues beyond the facial

ttribute prediction in future works. Besides, since BLAN contains

he reconstruction module, we are going to expand it to unsuper-

ised learning fields. 
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