
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 6, JUNE 2021 2089

Are You Confident That You Have Successfully
Generated Adversarial Examples?

Bo Wang , Member, IEEE, Mengnan Zhao , Student Member, IEEE, Wei Wang , Member, IEEE,

Fei Wei , Member, IEEE, Zhan Qin, Member, IEEE, and Kui Ren , Fellow, IEEE

Abstract— Deep neural networks (DNNs) have seen extensive
studies on image recognition and classification, image segmenta-
tion, and related topics. However, recent studies show that DNNs
are vulnerable in defending adversarial examples. The classifica-
tion network can be deceived by adding a small amount of pertur-
bation to clean samples. There are challenges when researchers
want to design a general approach to defend against a wide
variety of adversarial examples. To solve this problem, we intro-
duce a defensive method to prevent adversarial examples from
generating. Instead of designing a stronger classifier, we built a
more robust classification system that can be viewed as a struc-
tural black box. After adding a buffer to the classification system,
attackers can be efficiently deceived. The real evaluation results of
the generated adversarial examples are often contrary to what the
attacker thinks. Additionally, we do not assume a specific attack
method premise. This incognizance to underlying attacks demon-
strates the generalizability of the buffer to potential adversarial
attacks. Extensive experiments indicate that the defense method
greatly improves the security performance of DNNs.

Index Terms— Deep neural networks, adversarial examples,
structural black box, buffer.

I. INTRODUCTION

W ITH the emergence of deep learning (DL) and the
establishment of big data [1], DNN performance has

significantly improved on image classification and related
tasks [2]–[4]. However, until now, it still works as a black box.
Adversarial examples are attracting attention from researchers,
as they are helpful in understanding DL.

There are many attack methods available for generating
adversarial examples. For instance, [5] notes that tiny pertur-
bations for clean images can deceive classification networks.

Manuscript received April 28, 2020; revised July 20, 2020; accepted
August 13, 2020. Date of publication August 17, 2020; date of current
version June 4, 2021. This work was supported by the National Natural
Science Foundation of China under Grant U1936117, Grant U1736119,
Grant 61972395, and Grant 61772111. This article was recommended by
Associate Editor Y. Qin. (Corresponding author: Wei Wang.)

Bo Wang and Mengnan Zhao are with the School of Information and Com-
munication Engineering, Dalian University of Technology, Dalian 116024,
China (e-mail: bowang@dlut.edu.cn; zmnwelcome@mail.dlut.edu.cn).

Wei Wang is with the Center for Research on Intelligent Perception and
Computing, Institute of Automation, Chinese Academy of Sciences, Beijing
100190, China (e-mail: wei.wong@ia.ac.cn).

Fei Wei is with the Department of Electrical Engineering, State Univer-
sity of New York (SUNY) at Buffalo, Buffalo, NY 14200 USA (e-mail:
feiwei@buffalo.edu).

Zhan Qin and Kui Ren are with the College of Computer Science, Zhejiang
University, Hangzhou 310000, China, and also with the Institute of Cyberspace
Research (ICSR), Zhejiang University, Hangzhou 310000, China (e-mail:
qinzhan@zju.edu.cn; kuiren@zju.edu.cn).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2020.3017006

Goodfellow et al. [6] proposed the fast gradient sign method
(FGSM), for which a one-step gradient update is performed
based on the direction of the gradient sign at image pixels.
To improve the FGSM attack performance, [7] uses the
momentum iteration method to generate adversarial examples.
In addition, BIM [8], JSMA [9], and C&W [10] are also
widely used attack methods.

The studies of adversarial examples not only improve
the network robustness but also create security concerns for
researchers. Due to the potential hostile intentions of adver-
sarial examples, it is necessary to establish defensive methods.
Adversarial training [11] includes adversarial examples in the
training process. Papernot et al. [12] proposed the network
distillation method, which can interrupt the backward gradient.
The simplest methods for distinguishing clean images and
adversarial examples are training the classification network,
but this seems to be an infinite game. Reference [13] intro-
duced the auxiliary classification detector to extract ReLU
outputs of the trained classifier (e.g. VGG [14]) as features to
defend adversarial examples. However, all the above methods
need to retrain the network and it is challenging to transfer the
defensive ability to adversarial examples that are generated by
different attacks.

Based on this, we focus our attention on inquiring about
the possibility of preventing the generation of adversarial
examples rather than designing universal defensive methods.
Therefore, the exploration of the generalization performance
is transferred from the measurement between adversarial
examples to different attack methods. Compared with various
adversarial examples, the existing attacks have greater simi-
larities, such as gradient attacks and iterative attacks, which
make it possible to propose a predefense method. Similar
to the decorators in programming languages, we introduce
the system packaging theory (SPT) to solve the retraining
problem. Through packaging the classification system as a
structural black box, the SPT can deceive attackers without
changing the network parameters and structure.

Assume that attackers can access the original system (OS)
and download an offline version, which we call the copied
system (CS). As depicted in Fig. 1, the successfully generated
adversarial examples for CS are transferred to the OS to
evaluate the defensive performance of SPT. SPT aims to
trigger different mechanisms toward the normal testing process
and the attacking process to defend adversarial examples. The
gradient attack method not only realizes the attack but also
divulges the target to the attacked system. To deceive the

1051-8215 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on June 08,2021 at 05:28:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1057-7973
https://orcid.org/0000-0001-8319-4266
https://orcid.org/0000-0002-8943-0335
https://orcid.org/0000-0002-8598-0831
https://orcid.org/0000-0002-1969-2591

2090 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 6, JUNE 2021

Fig. 1. The analysis of deceiving goals. The attacker can access the
classification system and make a copy as an offline version, but with no
knowledge of the system composition.

Fig. 2. The components of the structural black box. The buffer optionally
controls the switch to output the label.

Fig. 3. Detailed description of the structural black box. The buffer consists
of multiple buffer regions (e.g. [m1, m2 . . . , mt]), a crafted classifier2 and
the similarity evaluation module.

attackers, for any test sample, CS offers the attacker labels,
logits, and backward gradient values.

The SPT works in two scenarios. First, the testing process
is interrupted when the structural black box senses that the
attacker is generating adversarial examples. Second, the struc-
tural black box continues to back the error gradients when
the test phase is assessed as an attacking process. Although
attackers have confidence in generated adversarial examples
for CS once accomplished, the OS can accurately classify the
generated samples. As shown in Fig. 2, the buffer is applied
to the structural black box for determining the working mode.
The backward gradient for the buffer is designed to disrupt
the attack direction. For the first scenario, we add a random
digital generator (randomly output the label) to the buffer,
and we experimentally choose an additional classifier to the
buffer for the second scenario. The detailed composition of
the structural black box is depicted in Fig. 3. To illustrate the
importance of buffer regions, we designed a comparator that
performs well in detecting adversarial examples but fails to
prevent their generation.

The contributions of this paper are summarized as follows:
• The proposed method, which packages the classification

system to defend the attacking process, is new to the
state-of-the-art.
• Different from detecting the generated adversarial exam-

ples, the SPT works on decreasing the number of attacks
and disrupting the attack directions. The backward error
gradient makes it possible for the structural black box to
deceive attackers.
• To choose the appropriate models, we perform extensive

experiments to evaluate the method performance on var-
ious datasets and models. The quantitative experiments
prove the defensive efficiency of the proposed method.

II. RELATED WORKS

A. Attacking Methods

The problem of generating adversarial examples has
recently been widely studied in computer vision. In addition
to the white-box attack methods mentioned in Section I,
Szegely et al. [5] indicated that the crafted adversarial example
by attacking model A is usually transferable for model B . This
transferability implies that adversarial examples can also be
generated effectively without access to the underlying model.

The adversarial examples are transferable among classi-
fication networks that learn the same or similar features.
Sarkar et al. [15] designed the UPSET and ANGRI networks
to generate adversarial examples, which attack on multi-
ple classifiers to obtain better generalization performance.
Reference [16] describes universal perturbations that can
simultaneously attack multiple images. One-pixel attacks [17]
tamper one pixel of the sample to realize the attack. The
researchers adopted the method of differential evolution to
find the crafted pixel. Reference [18] proposed adding large
perturbations to realize the attack. The researchers introduced
two different models, the texture transfer model and the
colorization model. It is novel that changing the color of a
clean image will lead to misclassification.

In addition, Papernot et al. [19] successfully generated
crafted adversarial input sequences for recurrent neural net-
works (RNNs). For the fields of semantic segmentation and
object detection, Xie et al. [20] introduced dense adver-
sary generation (DAG) to compute adversarial examples.
Reference [21] proposed a targeted adversarial attack for black
box audio systems.

B. Defending Methods

Adversarial examples pose a security threat to the field of
computer vision, so it is necessary to introduce corresponding
defense methods. Adversarial examples can be detected by the
density estimation method and the Bayesian neural network
uncertain method [22]. Papernot et al. [12] proposed network
distillation for defense, which builds two identical networks.
The probability produced by the first network is inherited as
inputs of the second network.

Huang et al. [11] applied adversarial examples as training
data such that the difficulty of generating effective adversarial
examples increased. Distribution differences were introduced

Authorized licensed use limited to: Dalian University of Technology. Downloaded on June 08,2021 at 05:28:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: ARE YOU CONFIDENT THAT YOU HAVE SUCCESSFULLY GENERATED ADVERSARIAL EXAMPLES? 2091

by [23] to distinguish clean images and adversarial examples.
Reference [24] adopted the reinforcement learning method to
realize detection, as such multiple known images are used to
predict future inputs and detect adversarial examples.

In addition, one can recover the adversarial example to
its original label. Given inputs, Xu et al. [25] reduced pixel
values and used a median filter to smooth them. The processed
samples were then passed to the trained classifier to obtain the
classification results. Based on PixelCNN, Song et al. [26]
improved PixelDefend to restore an image by maximizing
the distribution loss. Researchers first detected whether the
images were processed and then rectified some points of the
adversarial example to restore the original distribution.

However, using multiple defense methods simultaneously
cannot significantly improve the defense performance [27].
Reference [28] proposed attribute-steered detection for face
recognition models based on interpretability. The classification
results from the attribute-steered classifier and the original
classifier are compared with each other, and the image is
considered an adversarial example if the results are not equal.

III. PROPOSED METHODS

In this section, we clarify the deceiving goal, analyze several
existing common attack methods, and describe our proposed
method in detail.

A. The Deceiving Goals

As depicted in Fig. 1, there are two completely identi-
cal classification systems, OS and CS. We can deceive the
attacker in two scenarios. In scenario one, the attacker has
false confidence in a successful generation of adversarial
examples (untargeted attack), e.g. Label1 = Label0 but
Label2 �= Label0. Here, Label0 denotes the ground truth
label. Similarly, for the targeted attack, the deceiving goals are
Label1 �= T argeted_Class and Label2 = T argeted_Class.
In the second scenario, the attacker mistakenly believes that the
classification system does not successfully generate adversarial
examples. To conclude, the label that attackers expect to
generate is not consistent with the label obtained from the
OS but the CS does.

B. The Buffer: Defending Method for Iterative Attacks

BaseThe attacker can access the OS and download its
offline version, but they do not know the system composition.
We did not consider the situation that attackers reset the offline
system since attackers have not permissions to initialize the
system. In this paper, we package the classification model
as a structural black box. Namely, the attacker only allowed
to obtain labels, logits, and gradient backward value. One
may ask how to better protect a given image from generating
adversarial examples? To answer such questions, we start by
analyzing several existing attacks.

Basic Iterative Method (BIM) [8]:
The BIM crops the pixel values in each step and generates

adversarial examples in multiple iterations.

xn =
{
xn−1 + � · sign

(∇xn−1 J (xn−1, y)
)}

Clipx,ξ {xn} = min {255, x + ξ, max {0, x − ξ, xn}}

where x and y denote the clean image and the expected label,
and J is the predefined loss function, such as the cross-entropy
loss. xn is the generated sample after the iterative attack.
ξ and � represent the maximum degree of perturbations and
the single-step perturbations, respectively.

Momentum Iterative Fast Gradient Sign Method
(MIFSGM): One-step attacks have difficulty generating
anticipated adversarial examples. By adding momentum to
the FGSM, adversarial examples generated by [7] with more
iterations perform better in the black box context.

gn+1 = μ · gn + ∇xn J (xn, y)

‖ ∇xn J (xn, y) ‖
xn+1 = xn + ε · sign(gn+1)

where μ is applied to balance the momentum gn and the
current gradient value.
Jacobian-based

Saliency Map Attack (JSMA): Papernot et al. [9] pro-
posed the JSMA to accomplish targeted attacks. By searching
one-pixel pairs in each step, any sample modifications increase
the probability of the targeted class or decreases the sum
probability of other classes. JSMA has high time requirements
and memory consumption.

The large contrast between adversarial examples makes it
difficult to propose a general method for distinguishing adver-
sarial examples from clean images. However, it is possible
to prevent the process from generating adversarial examples
due to the similarity in different attacks, such as iterative
attacks and gradient-based attacks. Imitating the construction
principle of decorators, we package the original classification
network into a structural black box. The buffer in the structural
black box is built to disrupt the classification process once
the operation is determined to be an adversarial generation
process. As depicted in Fig. 3, the buffer consists of multiple
buffer regions (e.g. [m1, m2 . . . , mt]), another crafted selected
classifier and a similarity evaluation module.

Attack pattern1 The attacker iteratively attacks the system
to generate adversarial examples. The attack goal is misclas-
sification or targeted classification.

Similarity index We first consider processing a single input.
The initialization of the buffer region is set to 0 matrices. First,
the inputs are stored in m1. Next, samples saved in m1 are
transferred into m2 and new inputs are stored in m1. When the
number of inputs is larger than the length of the buffer regions,
the last image in the buffer regions is iteratively removed from
the buffer regions. Then, we calculate the difference between
the image in m1 and the removed image P if P is not a
0 matrix. Both the L1 norm and the mean squared error (MSE)
value can be used to calculate this difference. For convenience,
we adopt the peak signal-to-noise ratio (PSNR) method to
measure the similarity in Fig. 3.

PSNR(m1, P) = 10× log10(
max_pi xel2

(m1− P)2
) (1)

max_pi xel = 1 if the image is normalized; otherwise,
max_pi xel = 255. The large PSNR value denotes the high
similarity between the input images.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on June 08,2021 at 05:28:28 UTC from IEEE Xplore. Restrictions apply.

2092 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 6, JUNE 2021

Judging the attack process When the value calculated by
Eq. (1) is greater than the predefined threshold for the image
similarity, we judge the inputs as similar samples. The testing
process is interrupted when the network inputs the same
samples multiple times. Once the buffer meets the truncation
standard, the digital generator randomly outputs the image
category. At this time, the output of the CS makes the attacker
believe that the generated image has accomplished the attack
goal. The probability of the event, for which the randomly
generated label matches the ground truth label in one iteration,
is 1

N , where N denotes the total classification categories.
Deceiving mode To mislead the attacker, the testing process

should not be interrupted, and the final classification result
output by the CS needs to realize the attack goal. Therefore,
it is not appropriate to apply the random digital generator to the
buffer that will interrupt the testing process. Instead, we intro-
duce another unrelated classification network Classifier2 to
achieve this deceive intention. As shown in Fig. 3, when the
buffer meets the truncation standard, the CS outputs the label
generated by Classifier2 instead of Classifier. The backward
error gradient disturbs the direction of the attack and makes
it possible to deceive the attacker.

Next, we study the generation for the adversarial example
in a continuous process to have a further understanding of the
SPT. We denote the inputs as A, B , and · · · in alphabetical
order. In the normal attack situation, the attacker generates the
adversarial example for the next example when successfully
generating the adversarial example for the current sample. The
attack process is divided into different cases according to the
number of iterations.

Case 1: The number of iterations (I) needed by A to
generate adversarial examples is less than the length of buffer
regions t. The adversarial example is successfully generated
since the buffer is not triggered. To defend the new inputs
from generated adversarial examples, we choose to clear the
counting parameters when the PSNR value is less than
the predefined threshold. Namely, the settings are reset when
the following inputs are different from the current sample.

Case 2: The number of iterations (I) required by A to
generate adversarial examples is greater than t. The buffer
controls the propagation process once the attacker enters
similar images enough times (I≥ t+S, S≤ t). Then, the output
label of the CS is calculated by the Classifier2 regardless of the
targeted or untargeted attack. Similarly, we reset the settings
when the following input is different from the current input.
Another situation is that the buffer has been triggered, but the
adversarial example is successfully generated. This is because
few similar samples appear during the statistics.

Attack pattern2 The attack process fixes the number of
iterations to I . Similar to Attack pattern1, the buffer controls
the classification system when I ≥ t+S. Then, the gradient
values are passed back to the inputs through the Classifier2.

Improving for discontinuous attack However, the above
process is only useful when defending against continuous
attacks such as the input samples with the order A0, A1, · · · ,
An . Any discontinuous attack (e.g. A0, A1, · · · ,B , · · · , An)
will cause the defense to fail. To solve this problem, instead
of clearing the settings when the PSNR value is less than the

TABLE I

DEFINITIONS OF SEVERAL SYMBOLS THAT ARE
USED TO DESCRIBE THE BUFFER WORKFLOW

predefined threshold, and we choose to set s = 0, k = t when
k ≥ 2t. For convenience, we define the symbols in Table I.

The following section only considers that the number of
attack iterations is larger than t+S+p. In this case, the system
does not interrupt the generation process, and the gradient
value is optionally put back to the input via Classifier or
Classifier2. If we set s = 0 and k = 0 when k ≥ 2t, in each
2t iteration, the number of attacks for the Classifier is t+S.
Therefore, the total number of attacks for the Classifier can
be calculated by:

N ≥
⌊

I

2× t

⌋
× (S + t) ≈

(
1

2
+ S

t

)
× I

The rate of valid attacks is greater than N
I ≈ 1

2 + S
t . This

setting performs poorly to prevent the generation of adversarial
examples for the existence of constants. At least half of the
iterations are used to attack the Classifier. However, when
we reset k to t if k = 2t, in each t iteration, the number of
successful attacks for the Classifier is S.

N ≥ t + S +
⌊

I

t
− 2

⌋
× S (2)

The valid attack rate is expressed as:
N

I
≥ (t − S)+ � I

t 	 × S

I

≈ (t − S)

I
+ S

t

Namely, the rate of valid attack approximates S
t when

(t−S)
I ≈ 0. Therefore, this setting can better protect the system

from iterative attacks.
The deceive rate (DR) is adopted as the evaluation index to

evaluate the performance of the buffer:
DR = |1− Acc(C S)

Acc(OS)
| (3)

where Acc(·) denotes the classification accuracy of the system.
The detailed process is given in the algorithm 1.

Does this defense process have any effects on the
Classifier? The buffer has little effect on the classification per-
formance of the Classifier as long as we choose a reasonable
length for buffer regions. In the extreme case, the length of
the buffer regions is set to 1. That is, two consecutive similar
inputs make the classification system output from Classifier2.
This situation greatly limits the practical application of the

Authorized licensed use limited to: Dalian University of Technology. Downloaded on June 08,2021 at 05:28:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: ARE YOU CONFIDENT THAT YOU HAVE SUCCESSFULLY GENERATED ADVERSARIAL EXAMPLES? 2093

buffer, such as applying the classification system into the scene
of time continuity. Similarly, it is not available to set the length
of the buffer regions to infinity since the buffer loses its ability
to defend against attacks. Therefore, the value of t should be
modified according to various application scenarios.

C. The Selection Principle for Classifiers

1) Defensive Performance Against an Untargeted Attack:
a) Misclassification: Once the system misclassifies the

input, the attacker generates the adversarial example for the
next sample. When the buffer is triggered and controls the
system output from Classifier2, the result needs to meet
the demands of misclassification easily to stop the attacking
process early.

b) Iterative Fixed: Regardless of whether the output of
the classification system satisfies the misclassification, the cur-
rent iterative process continues to update the samples. When
Classifier2 and Classifier perform transferability poorly, train-
ing on Classifier2 may not cause the Classifier to misclassify.

2) Defensive Performance Against a Targeted Attack:
Limited Iterations: The training process is not interrupted

until the classification system achieves a targeted attack or
the number of iterations reaches the upper limit. The tar-
geted attack is harder than the untargeted attack, so the
targeted attack needs more iterations to successfully realize
the goal, which means more opportunities to trigger the buffer.
To deceive attackers, we choose the vulnerable network that
more easily realizes the targeted attack as Classifier2.

The classification accuracy of the Classifier for clean sam-
ples should be as high as possible. At the same time, the Clas-
sifier should have difficulty generating adversarial examples.
For Classifier2, the iterative attack for it should have little
effect on the classification accuracy of the Classifier.

We adopt two different networks as Classifier2, an untrained
network, and a replacement label trained network. We use
the ground truth label (GT) to train the Classifier and
the|nb_class−1−GT | label to train Classifier2, which we call
replacement label training. nb_class denotes the number of
categories in the dataset. For the same samples, both Classifier
and Classifier2 can classify the samples correctly, but the
output labels are different.

D. The Comparator: Fail Deceive Case to Indicate the
Importance of the Buffer Regions

In Fig. 4, we show how the comparator detects adversarial
examples based on the standard set. For each category in the
standard set, there is one standard image. We first choose
images that can be classified correctly by the VGG-Face
model. The model is implemented by TensorFlow using the
pretrained model from [29]. Then, we combine manual selec-
tion and cutting with the VGG-Face model to generate the
standard dataset. Only one image with the highest classifi-
cation accuracy is stored for each image class. We adopt
the f ace_recogni tion project to obtain the similarity. The
similarity is calculated by comparing the difference between
the inputs and the corresponding standard images. The stan-
dard images are searched based on the output labels of the

Fig. 4. Package the original classifier with the comparator. where Classifier
and Classifier3 represent the original network and another irrelevant network,
respectively, both of which are trained using the same label and perform with
high classification accuracy. Labeli as the index to find the standard image
from the stand_set.

Fig. 5. To defense the discontinuous attack. Where Classifier and Classifier2
respectively represent the original network and another irrelevant network,
both of which are trained using the same label and perform the high
classification accuracy.

VGG-Face model. A low degree of similarity means that the
VGG-Face model misclassifies the input.

Imitating the construction of the buffer, we train another
irrelevant network Classifier3. Once the comparator controls
the system, the system outputs labels from Classifier3. What
is the difference between the buffer and the comparator?
The comparator directly calculates the difference between the
inputs and the pre-extracted standard images. Therefore, there
are no buffer regions for the comparator.

E. To Defense the Discontinuous Attack

To defense the generalized (are more practical) version of
the discontinuous attack such as A0, B0, C0, D0, A1, B1, C1,
D1, A2, B2, C2, D2, we propose a chain detection method by
expanding the buffer region. As shown in Fig. 5, the chain
detection method also includes multiple buffer regions. Each
buffer region is composed of one chain. The detection steps
are as follows:

1). For any input sample, check whether the current image
exists in the buffer region. If not, create a new chain in buffer
regions. Then, the current image stored in this new chain in
order. If it already exists, it stored in the current buffer.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on June 08,2021 at 05:28:28 UTC from IEEE Xplore. Restrictions apply.

2094 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 6, JUNE 2021

TABLE II

VULNERABILITY AND GENERALIZATION PERFORMANCE STUDY FOR BOTH TARGETED ATTACK AND UNTARGETED ATTACK. WHERE ORI DENOTES
THE ORIGINAL CLASSIFICATION ACCURACY OF THE MODEL. FOR TARGETED ATTACKS, THE ATTACK GOAL IS 0 AND ORI = 0.1.

WE SET THE ITERATIONS TO 10 FOR BOTH THE UNTARGETED ATTACK (� = 0.0013) AND THE TARGETED ATTACK (� = 0.003)

2). Calculate the length of chains of all buffer regions. When
the length of any chain is greater than the threshold, Classifier2
outputs the result.

3). When the length of the chain of any buffer region is too
long, or the buffer regions filled, reset the parameters.

F. Loss Function

Given a fixed classifier with parameters θ , a clean image x
with true label y, and cross-entropy loss function loss,
the untargeted attack is realized by solving:

max
δ

f · loss(x + δ, y, θ), s.t . ||δ||p ≤ ξ || f ||1 = 1 (4)

where || · ||p denotes the norm function. x ′ (x ′ = x + δ)
is the generated adversarial example, which makes the fixed
classification network produce the new label n (n �= y).
We modify the sign of the f to switch the untargeted or
targeted attack. The targeted attacks also replace y with g,
where g denotes the targeted label.

IV. EXPERIMENT

A. Datasets and Some Details

In the experiments, all images come from the open databases
CIFAR10 [30] and VGG-FACE (VF) [31]. We implement the
proposed method by using PyTorch® and TensorFlow®. All
experiments are trained with NVIDIA GTX 1080Ti GPUs.
Without the specialized statement, we set the length of the
buffer regions t, the threshold of the image similarity T and
the truncated threshold S to 10, 35 dB and 5, respectively.

B. Defense Performance of the Buffer

1) Vulnerability and Generalization Performance Study:
We adopt the testing set in the CIFAR10 dataset to test the
performance of the proposed method. Reference [15] used
four kinds of networks to validate the attack transferability.
where C1 and C2 are ReNnet [32] style networks, and C3 and
C4 (without BN) are deep neural networks. The researchers
simultaneously attack multiple trained networks to improve
the transferability of the adversarial example, such as training
on C1, testing on C2, C3, C4, or training on C1, C2, C3, and
testing on C4. The experimental results in their paper show

Fig. 6. The overall network proposed by [15] for C4. Another fully connected
layer is added to the end of the network to realize the different tasks.

TABLE III

DEFINITIONS OF SEVERAL SYMBOLS APPEARING

IN THE FOLLOWING EXPERIMENTS

the poor generalization performance for ResNet style net-
works when training on deep neural networks. Based on this,
we also validate the attack transferability between several other
networks, VGG [14], LeNet [33], ResNet, GoogLeNet [34],
C4_wo_B N and C4 (with BN). The network structure of
C4_wo_B N is given in Fig. 6. For a fair comparison,
we only modify the attacked model and leave the other settings
unchanged. In this subsection, both targeted and untargeted
attacks are executed through BIM. According to the discussion
in Section III, we choose the network with high classification
accuracy and the hardest to attack as the Classifier (C1). The
network that is easy to attack and performs poor generalization
performance to C1 is the Classifier2 (C2).

We show the experimental results in Table II. It seems
that deeper networks increase the difficulty of attacks. For
example, VGG, LeNet, and the attack success rates decrease
in the order. Additionally, networks with residual connections
are more vulnerable. Compared with LeNet, ResNet possesses
higher neural network complexity but has poor antiattack
performance. In addition, the C4 network without BN is more

Authorized licensed use limited to: Dalian University of Technology. Downloaded on June 08,2021 at 05:28:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: ARE YOU CONFIDENT THAT YOU HAVE SUCCESSFULLY GENERATED ADVERSARIAL EXAMPLES? 2095

TABLE IV

THE INFLUENCE OF C2 TO THE DEFENSIVE PERFORMANCE. WHERE C4C1 INDICATES THAT THE NETWORK C4 IS TRAINED WITH THE SAME LABELS
AS C1. ADV DENOTES THE SITUATION THAT DIRECTLY ATTACKING C1 WITHOUT USING THE BUFFER. THE TARGETED ATTACK GOAL IS 0

TABLE V

ANALYSIS TO UNDERSTAND HOW THE BUFFER IS USED TO DECEIVE

ATTACKERS. THE EXPERIMENTS ARE REALIZED BY USING BIM
UNTARGETED ATTACKS. ADV DENOTES THE SITUATION OF

DIRECTLY ATTACKING C1 WITHOUT USING THE BUFFER

TABLE VI

GENERALIZATION PERFORMANCE STUDY FOR DIFFERENT ATTACK

METHODS. THE EXPERIMENTS ARE REALIZED
BY TARGETED ATTACK

robust than with one. The adversarial example generated by the
C4 network without BN has better transferability performance.
LeNet shows the worst generalization performance, and C4 is
more vulnerable to attack. Therefore, on the grounds of the
experimental results, we choose the VGG network as C1, both
C4 and LeNet as C2.

2) The Influence of C2 on Defensive Performance: To
conveniently express the experiments, Table III defines several
symbols appearing in the following sections. As mentioned
above, we hold the experimental settings unchanged, and four
kinds of experiments are performed to detect the defensive
performance of the buffer.

The experimental results are shown in Table IV. Ts, T- and
Td decreased the successful attack rate since the attack for
C2 cannot transfer the ability to C1 very well. Compared
with Ts, T- and Td can better prevent the generation of
adversarial examples. Additionally, Td performs better than
T- against untargeted attacks and the opposite situation in

TABLE VII

IMPACT OF DIFFERENT PARAMETER SETTINGS ON DEFENSE

PERFORMANCE. WHERE ITER AND ε DENOTE THE TOTAL
NUMBER OF ATTACKS AND THE SINGLE-STEP

PERTURBATION FOR THE GIVEN SAMPLE

targeted attacks. In the Ts training mode, C2 and C1 are trained
with the same label, which means that the two classifiers
share the same optimization direction. However, in T-, C2 is
an untrained network. Therefore, when attacking C2 (targeted
and untargeted attack), the system easily realizes the attack
goal. For untargeted attacks, the probability for which the
randomly generated label matches the ground truth label in
one iteration is 1

N , where N is the total classification category.
In the Td training mode, we use replacement label training.
For untargeted attacks, the probability that the output from C2
is inconsistent with the output from C1 in Td is higher than
that from T-. For targeted attacks, C2 and C1 are optimized in
completely different directions. However, the trained network
has difficulty realizing the targeted attack compared to the
untrained network.

Next, we experimentally analyze how the buffer is applied
to deceive attackers. Three kinds of classification accuracy are
adopted to prove the defensive performance: the accuracy
detected by OS after directly attacking C1, the accuracy
detected by CS after attacking CS and the accuracy detected
by OS after attacking CS. The experimental results are shown
in Table V. Similar to the results in Table IV, Td can better
prevent the generation of adversarial examples for untargeted
attacks. Additionally, since network C2 is more vulnerable to

Authorized licensed use limited to: Dalian University of Technology. Downloaded on June 08,2021 at 05:28:28 UTC from IEEE Xplore. Restrictions apply.

2096 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 6, JUNE 2021

TABLE VIII

THE COMPARISON OF THE DEFENSIVE ABILITY BETWEEN THE EXISTING METHODS AND OURS. WE REALIZE THE TARGETED ATTACK
USING BIM WITH ITERATION= 40 AND � = 0.0013. AC/ATTACK DENOTES THE CLASSIFICATION ACCURACY AFTER

THE ADVERSARIAL ATTACK. MAC/ATTACK IS THE CLASSIFICATION ACCURACY

AFTER THE ADVERSARIAL ATTACK AND THE POSTPROCESSING

attack, the attack rate in CS is higher than the attack rate in OS.
In essence, the buffer protects against adversarial attacks by
reducing the number and disrupting the direction of the attack
on C1. According to the results, C4 performs slightly better
than LeNet.

3) Generalization Performance on Different Attack
Methods: All experiments mentioned above adopt the BIM
as the attack method. Next, we study the generalization
performance of the buffer for other attacks. JSMA [9] is
proposed to realize the targeted attack, and the attack process
is transferred until the network outputs the targeted goal.
Similar to the above experiments, we also choose VGG as C1,
LeNet and C4 as C2.

The experimental results in Table VI are consistent with the
situation in Table IV, such that C4 performs better than LeNet.
This happens because C4 is more vulnerable to attack. For
example, in Table IV, when we use the BIM and Ts methods
to implement the targeted attack, the successful attack rate
of C4 (0.4211) is much higher than that of LeNet (0.1859).
We also adopt MIFGSM to detect the defense performance
of the buffer. The number of attack iterations and single-step
perturbations are set to 100 and 3e-4. It is obvious that the
proposed method is still useful for other iterative attacks.

4) Impact of Different Hyperparameter Settings on
Defensive Performance: In this subsection, we test the
influence of hyperparameters in MIFSGM on the defensive
performance of the buffer. All experiments are realized with
targeted attacks and fixed iterations. By setting different
hyperparameters, we set up several groups of experiments.
The experimental results are shown in Table VII.

MIFGSM1 has lost its defense performance since
∀m1,P PSN R(m1, p) < 35. MIFGSM1 and MIFGSM2 indi-
cate that the buffer has good defensive performance against
iterative attacks when the single-step perturbation is small
enough ∃m1,P PSN R(m1, p) > 35. Additionally, it is difficult
to generate targeted adversarial examples for small pertur-
bations. MIFGSM2 and MIFGSM3 show that the defense
method has good generalization performance for increasing
the number of attacks. MIFGSM4 performs better DR than
MIFGSM3 due to the decreased overall number of attacks
for C1, which can be calculated by the formula (2). A t that

TABLE IX

THE ADVERSARIAL EXAMPLE DETECTION RATE OF THE COMPARATOR

FOR SEVERAL ATTACK METHODS (VF DATABASE)

is too large (e.g. t = 100) will decrease the success rate since
the buffer loses its ability.

5) Comparative Experiment: To show the effectiveness of
our method, we also compared it with the existing defense
methods. We classify the defensive methods according to
their detection mode. The detection methods MedianSmooth-
ing [35] and JPEGFilter [36] distinguish the adversarial exam-
ples by modifying the image pixels. Adversarial training [37]
is a prevention method that increases the difficulty of suc-
cessfully generating adversarial examples. We also combine
detection methods and adversarial training. The experimental
results are given in Table VIII. It is worth noting that only our
defense method has the possibility of deceiving attackers. This
method also has little effect on the classification accuracy for
clean images and successfully decreases the attack rate.

C. Defense of the Comparator

We use the same experimental settings following [28] and
adopt the VGG-FACE (VF) dataset [31] to test the perfor-
mance of the comparator. We randomly select 100 images as
the testing set (1 image for each class, a total of 100 cate-
gories). Among them, all images can be classified correctly
by the VGG-Face model. Six attacks are utilized to generate
adversarial examples, which means that we obtain 600 adver-
sarial examples. 0 and 1 in the similarity module represent
the benign samples and the adversarial examples, respec-
tively. We show the detection rate of the comparator (without
Classifier3) for adversarial examples in Table IX. The gener-
ated adversarial examples cause the classifier (C1) to output
the wrong label. However, the standard image searched accord-
ing to the wrong label has little relevance to the adversarial

Authorized licensed use limited to: Dalian University of Technology. Downloaded on June 08,2021 at 05:28:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: ARE YOU CONFIDENT THAT YOU HAVE SUCCESSFULLY GENERATED ADVERSARIAL EXAMPLES? 2097

TABLE X

TO DEFEND AGAINST DISCONTINUOUS ATTACKS SUCH AS A0, B0, C0, D0, A1, B1, C1, AND D1 BY CHAIN DETECTION METHOD.
WE REALIZE THE TARGETED ATTACK USING BIM WITH ITERATION= 40 AND � = 0.0013. ADV DENOTES THE GENERATED

ADVERSARIAL EXAMPLES. CUT MEANS TO CONSTRAIN THE IMAGE PIXELS AFTER EACH GENERATION

TABLE XI

TO DEFEND AGAINST DISCONTINUOUS ATTACKS SUCH AS A0, B0, C0, D0, A1, B1, C1, AND D1. WE REALIZE THE TARGETED

ATTACK USING BIM WITH ITERATION= 40 AND � = 0.0013. ADV DENOTES THE GENERATED ADVERSARIAL EXAMPLES.
CUT MEANS TO CONSTRAIN THE IMAGE PIXELS AFTER EACH GENERATION

Fig. 7. The specific components of the Iter_block are shown in Fig. 6. where
K denotes the depth of the feature map. For C4 (with BN), the BN operation
is added between the Conv and ReLU layers.

example. Therefore, almost all adversarial examples can be
detected.

However, for the comparator, regardless of the targeted or
untargeted attacks, DR = 0. The attacker needs to further
attack the Classifier3 after successfully causing the Classifier
to misclassify. Therefore, regardless of the targeted and untar-
geted attacks, the comparator triggers the same mechanism in
OS and CS. Namely, the adversarial examples that can suc-
cessfully deceive the CS can also deceive the OS. Therefore,
the buffer regions are vital to trick the attacker, which can
trigger different modes for CS and OS.

D. Defense the Discontinuous Attack

To defense the discontinuous attack, we adopt the chain
detection method. Namely, similar images are stored in the
same buffer region in a chain, and different images are stored
in different buffer regions.

In the experiment, we realize the discontinuous attack in
the way of alterate input (A0, B0, C0, D0, A1, B1, C1, D1,
A2, B2, C2, D2). The max length of the buffer regions is
10, and the length of the chain is 20. The system outputs
results from Classi f ier2 when the length of any chain is

greater than 5. We set the PSNR value to 30 dB for the
discontinuous attack without CUT and to 25 dB for the
discontinuous attack with CUT, where CUT means to constrain
the image pixels after each generation. It can be seen from
the experiment results shown in Table X, the chain detection
method successfully deceive the generation of adversarial
examples. Namely, low attack rate for Classi f irer1 and high
attack rate for Classi f ier2. Meanwhile, this method little
affects the classification accuracy (decrease less than 0.01) for
the clean images. The method without CUT performs better
than with CUT since the CUT expands the difference between
similar inputs.

E. Related Experiment

The core of our paper is to introduce how to deceive
attackers. Namely, sensing an attack before the generated
samples deceive the model. The defensive ability of the buffer
is limited to certain conditions. For instance, the buffer just
detects the discontinuous attack (e.g., A0, B0, C0, D0, A1, B1,
C1, D1) when t%Epoch=0 (e.g., Epoch=4). Here, is a similar
method that can defend the targeted attack and without a need
to consider the mentioned questions:

1) Train the original classifier Net (·) and another classifier
Net2(·) that performs transferability poorly to the original
classifier.

2) Obtain the current flag fn by deterimining whether both
classifiers produce the same label.

3) Combine the flags fn and fn−1 to determine the current
output. For example, label = (fn& fn−1) · Net (x) + (1 −
fn& fn−1) · Net2(x).

Even for a discontinuous attack, this method is still useful.
We realize the discontinuous attack in the way of alterate
input (A0, B0, C0, D0, A1, B1, C1, D1, A2, B2, C2, D2)
and show the experiment results in Table XI. Analyzed by
the experiment results, this method increased the difficulty of
generating adversarial examples. However, this method only
useful for deceiving the targeted attack.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on June 08,2021 at 05:28:28 UTC from IEEE Xplore. Restrictions apply.

2098 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 6, JUNE 2021

Algorithm 1 The Buffer Workflow
Require: Construct global variables: k = 0; s = 0; x

Constant:T≥ 0; S≥0; t≥0;
Ensure: Targeted attack (L) for structural black box.

Construct the buffer regions:
M ← [m1, m2, . . . mt]
Get the outputs:
Label1← Classi f ier(x); Label2← Classi f ier2(x)
if ++ k < t then

Buffer regions shift right:
1. N ← M
2. M[0] ← x
3. M(1 :)← N(0 : t − 1)
return Label1

else {++ k < 2t}
P ← N[−1]
Repeat the buffer regions shift right 1,2,3.
D = PSNR (M[0], P)
if D ≥ T then

s ← s+1
if s > S then

return Label2
end if

else
return Label1

end if
else {k ≥ 2t}

s ← 0; k← t;
return Label2

end if

F. Analysis of Storage Requirements

Two main places in this paper take up storage, the buffer
regions, and the classifier that is unrelated to the original
classifier. The size of the storage area occupied by the buffer
regions depends on the length of the buffer regions and the
image size. In this paper, we set the value of t to 10 100 and
choose the CIFAR10 as the testing set. Hence, the structural
black box requires an extra 100×P pixels storage. P denotes
the number of image pixels. To store these images, we need
approximately 0.4 MB of memory. The memory occupied by
Classifier2 depends on the number of parameters of Classifier2
(e.g., an extra 8.28 MB for storing C4). LeNet is smaller
than C4. Therefore, the memory occupied by Classifier2 can
be ignored.

V. CONCLUSION

In this paper, we propose a defensive method that can
deceive an attacker in the attacking process. With the analysis
based on existing attacks, we construct the structural black box
by simulating the decorator in programming languages. The
buffer can fool the attacker by backing the error gradients
of the Classifier2 such that it can defend both targeted and
untargeted attacks. Meanwhile, the method has little effect on
the normal classification process. However, this method is less
effective against fewer step attacks. The t should not be set

too large to increase the sensitivity to fewer steps of attack.
The S should not be set too small to increase the tolerance to
continuous similar inputs. By extensive experimental studies,
we choose the appropriate models to improve the defensive
performance of the network. The experimental results indicate
that the proposed method performs well in defending against
iterative attacks.

REFERENCES

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[3] L. Gaborini, P. Bestagini, S. Milani, M. Tagliasacchi, and S. Tubaro,
“Multi-clue image tampering localization,” in Proc. IEEE Int. Workshop
Inf. Forensics Secur. (WIFS), Dec. 2014, pp. 125–130.

[4] K. Dale, K. Sunkavalli, M. K. Johnson, D. Vlasic, W. Matusik, and
H. Pfister, “Video face replacement,” in ACM Trans. Graph. (TOG),
vol. 30, no. 6., 2011, p. 130.

[5] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
in Proc. Int. Conf. Learn. Represent., 2014, pp. 1–10. [Online]. Avail-
able: http://arxiv.org/abs/1312.6199

[6] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harness-
ing adversarial examples,” 2014, arXiv:1412.6572. [Online]. Available:
https://arxiv.org/abs/1412.6572

[7] Y. Dong et al., “Boosting adversarial attacks with momentum,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 9185–9193.

[8] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” in Proc. ICLR Workshop, 2017, pp. 1–14.

[9] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P), Mar. 2016,
pp. 372–387.

[10] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2017,
pp. 39–57.

[11] B.-C. Huang, S.-W. Chou, J. M. Hong, and C.-C. Yen, “Global tran-
sonic solutions of planetary atmospheres in a hydrodynamic region–
hydrodynamic escape problem due to gravity and heat,” SIAM J. Math.
Anal., vol. 48, no. 6, pp. 4268–4310, Jan. 2016.

[12] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in Proc. IEEE Symp. Secur. Privacy (SP), May 2016, pp. 582–597.

[13] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting
adversarial perturbations,” in Proc. 5th Int. Conf. Learn. Represent.
(ICLR), 2017, pp. 1–12.

[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

[15] S. Sarkar, A. Bansal, U. Mahbub, and R. Chellappa, “UPSET
and ANGRI: Breaking high performance image classifiers,” 2017,
arXiv:1707.01159. [Online]. Available: http://arxiv.org/abs/1707.01159

[16] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Univer-
sal adversarial perturbations,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 1765–1773.

[17] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling
deep neural networks,” IEEE Trans. Evol. Comput., vol. 23, no. 5,
pp. 828–841, Oct. 2019.

[18] A. Bhattad, M. J. Chong, K. Liang, B. Li, and D. A. Forsyth, “Unre-
stricted adversarial examples via semantic manipulation,” in Proc. ICLR,
2020, pp. 1–18.

[19] N. Papernot, P. McDaniel, A. Swami, and R. Harang, “Crafting adver-
sarial input sequences for recurrent neural networks,” in Proc. MILCOM
IEEE Mil. Commun. Conf., Nov. 2016, pp. 49–54.

[20] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille, “Adversarial
examples for semantic segmentation and object detection,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 1369–1378.

[21] R. Taori, A. Kamsetty, B. Chu, and N. Vemuri, “Targeted adversarial
examples for black box audio systems,” in Proc. IEEE Secur. Privacy
Workshops (SPW), May 2019, pp. 15–20.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on June 08,2021 at 05:28:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: ARE YOU CONFIDENT THAT YOU HAVE SUCCESSFULLY GENERATED ADVERSARIAL EXAMPLES? 2099

[22] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting
adversarial samples from artifacts,” in Proc. Int. Conf. Mach. Learn.,
2017, pp. 1–9.

[23] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel,
“On the (statistical) detection of adversarial examples,” 2017,
arXiv:1702.06280. [Online]. Available: http://arxiv.org/abs/1702.06280

[24] Y.-C. Lin, M.-Y. Liu, M. Sun, and J.-B. Huang, “Detecting adversar-
ial attacks on neural network policies with visual foresight,” 2017,
arXiv:1710.00814. [Online]. Available: http://arxiv.org/abs/1710.00814

[25] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial
examples in deep neural networks,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2018, pp. 1–16. [Online]. Available: http://wp.internetsociety.
org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-
4_Xu_paper.pdf

[26] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman, “Pixelde-
fend: Leveraging generative models to understand and defend against
adversarial examples,” in Proc. 6th Int. Conf. Learn. Represent. (ICLR),
May 2018, pp. 1–20.

[27] W. He, J. Wei, X. Chen, N. Carlini, and D. Song, “Adversarial example
defense: Ensembles of weak defenses are not strong,” in Proc. 11th
USENIX Workshop Offensive Technol. (WOOT), 2017, p. 15.

[28] G. Tao, S. Ma, Y. Liu, and X. Zhang, “Attacks meet interpretability:
Attribute-steered detection of adversarial samples,” in Proc. Adv. Neural
Inf. Process. Syst., 2018, pp. 7717–7728.

[29] A. Vedaldi and K. Lenc, “MatConvNet: Convolutional neural networks
for MATLAB,” in Proc. 23rd ACM Int. Conf. Multimedia MM, 2015,
pp. 689–692.

[30] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto,
ON, Canada, 2009.

[31] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “VGGFace2:
A dataset for recognising faces across pose and age,” in Proc. 13th IEEE
Int. Conf. Autom. Face Gesture Recognit. (FG), May 2018, pp. 67–74.

[32] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 1–7.

[33] R. Al-Jawfi, “Handwriting arabic character recognition lenet using neural
network,” Int. Arab J. Inf. Technol., vol. 6, no. 3, pp. 304–309, 2009.

[34] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9.

[35] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial
examples in deep neural networks,” 2017, arXiv:1704.01155. [Online].
Available: http://arxiv.org/abs/1704.01155

[36] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study of the effect
of JPG compression on adversarial images,” 2016, arXiv:1608.00853.
[Online]. Available: http://arxiv.org/abs/1608.00853

[37] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,” 2017,
arXiv:1706.06083. [Online]. Available: http://arxiv.org/abs/1706.06083

[38] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial
patch,” 2017, arXiv:1712.09665. [Online]. Available: http://arxiv.org/
abs/1712.09665

Bo Wang (Member, IEEE) received the B.S. degree
in electronic and information engineering, and the
M.S. and Ph.D. degrees in signal and information
processing from the Dalian University of Technol-
ogy, Dalian, China, in 2003, 2005, and 2010, respec-
tively. From 2010 to 2012, he was a Post-Doctoral
Research Associate with the Faculty of Management
and Economics, Dalian University of Technology,
where he is currently an Associate Professor with
the School of Information and Communication Engi-
neering. His current research interests focus on the

areas of multimedia processing and security, such as digital image processing
and forensics.

Mengnan Zhao (Student Member, IEEE) received
the B.S. degree in electronic and information engi-
neering from the Tianjin University of Technology,
China, in 2018. He is currently pursuing the mas-
ter’s degree with the School of Information and
Communication Engineering, Dalian University of
Technology. His research interest includes adversar-
ial examples and forensics.

Wei Wang (Member, IEEE) received the B.E. degree
in computer science and technology from North
China Electric Power University in 2007. Since
2012, he has been with the National Laboratory of
Pattern Recognition, Institute of Automation, Chi-
nese Academy of Sciences, where he is currently
an Assistant Professor. His research interests include
pattern recognition, image processing, and digital
image forensics, including watermarking, steganaly-
sis, and tampering detection.

Fei Wei (Member, IEEE) received the B.S. degree
in electrical engineering from the Harbin Univer-
sity of Science and Technology, Harbin, China,
in 2012, and the M.S. degree in electrical engi-
neering from Harbin Engineering University, Harbin,
in 2015. He is currently pursuing the Ph.D. degree
in electrical engineering with the State University of
New York (SUNY) at Buffalo, Buffalo, NY, USA,
where he has been a Research Assistant with the
Department of Electrical Engineering, since 2015.
His research interests are varied and include the

cross fields of network information theory, coding theory, machine learning,
and data mining.

Zhan Qin (Member, IEEE) received the Ph.D.
degree from the Computer Science and Engineer-
ing Department, State University of New York at
Buffalo, in 2017. He was an Assistant Professor
with the Department of Electrical and Computer
Engineering, University of Texas at San Antonio.
He is currently a ZJU100 Young Professor with both
the College of Computer Science and Technology
and the Institute of Cyberspace Research (ICSR),
Zhejiang University, China. His current research
interests include data security and privacy, secure

computation outsourcing, artificial intelligence security, and cyberphysical
security in the context of the Internet of Things. His works explore and
develop novel security-sensitive algorithms and protocols for computation and
communication in the general context of cloud and Internet devices.

Kui Ren (Fellow, IEEE) received the Ph.D. degree
from the Worcester Polytechnic Institute, Worcester,
MA, USA. He is currently a Professor of computer
science and technology and the Director of the Insti-
tute of Cyberspace Research, Zhejiang University,
Hangzhou, China. His current research interests span
cloud and outsourcing security, wireless and wear-
able system security, and artificial intelligence secu-
rity. He was a recipient of the NSF CAREER Award
in 2011 and the IEEE CISTC Technical Recognition
Award in 2017. He is also a Distinguished Scientist
of the ACM.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on June 08,2021 at 05:28:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

