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SOURCE CAMERA IDENTIFICATION
USING SUPPORT VECTOR MACHINES

Bo Wang, Xiangwei Kong and Xingang You

Abstract Source camera identification is an important branch of image forensics.
This paper describes a novel method for determining image origin based
on color filter array (CFA) interpolation coefficient estimation. To re-
duce the perturbations introduced by a double JPEG compression, a co-
variance matrix is used to estimate the CFA interpolation coefficients.
The classifier incorporates a combination of one-class and multi-class
support vector machines to identify camera models as well as outliers
that are not in the training set. Classification experiments demonstrate
that the method is both accurate and robust for double-compressed
JPEG images.
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1. Introduction
Sophisticated digital cameras and image editing software increase the

difficulty of verifying the integrity and authenticity of digital images.
This can undermine the credibility of digital images presented as evi-
dence in court. Two solutions exist, watermarking and digital image
forensics. Compared with the active approach of digital watermarking,
digital image forensics [7, 12] is a more practical, albeit more challeng-
ing, approach. In a digital forensics scenario, an analyst is provided
with digital images and has to gather clues and evidence from the im-
ages without access to the device that created them [15]. An important
piece of evidence is the identity of the source camera.

Previous research on source camera identification has focused on de-
tecting defective sensor points [5] and generating reference noise patterns
for digital cameras [10]. The reference noise pattern for a digital cam-
era is obtained by averaging over a number of unprocessed images. The
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source camera corresponding to an image is identified using a correlator
between the reference pattern noise and the noise extracted from the
image. These methods suffer from the limitation that the analyst needs
access to the digital camera to construct the reference pattern. More-
over, the reference pattern is camera-specific instead of model-specific.

Several methods have been proposed for identifying the source camera
model. These methods primarily extract features from the digital image
and use a classifier to determine image origin. The method of Kharrazi,
et al. [8] uses image color characteristics, image quality metrics and the
mean of wavelet coefficients as features for classification. Although this
method has an average classification accuracy of nearly 92% for six dif-
ferent cameras, it cannot easily distinguish between cameras of the same
brand but different models. The classification accuracy can be improved
by combining the feature vector in [8] with the lens radial distortion
coefficients of digital cameras [4]. However, extracting distorted line
segments to estimate the distortion parameters limits the application
of this method to images that contain distorted line segments. Mean-
while, good performance has been obtained by combining bi-coherence
and wavelet features in a classifier [11].

Recently, several algorithms that use color filter array (CFA) inter-
polation coefficients have been developed. Most digital cameras use a
number of sensors to capture a mosaic image, where each sensor senses
only one color – red (R), green (G) or blue ((B). Consequently, a CFA
interpolation operation called “demosaicking” is necessary to obtain an
RGB color image. A variety of CFA interpolation patterns are used;
the most common is the Bayer pattern. Bayram, et al. [1] employ an
expectation-maximization algorithm to extract the spectral relationship
introduced by interpolation to build a camera-brand classifier. Long
and Huang [9] and Swaminathan, et al. [14, 15] have developed CFA in-
terpolation coefficient estimation methods based on the quadratic pixel
correlation model and the minimization problem. The best experimen-
tal results were obtained by Swaminathan, et al. [15], who achieved an
average classification accuracy of 86% for nineteen camera models.

Most of the methods discussed above use Fisher’s linear discriminant
or support vector machine (SVM) classifiers. But these classifiers only
distinguish between classes included in their training model – a false
classification occurs when an item belonging to a new class is presented.
Another problem is that the images for source camera identification of-
ten have double JPEG compression, which usually causes the methods
discussed above to incorrectly classify the images.

This paper focuses on the important problem of identifying the camera
source of double-compressed JPEG images. The method addresses the
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difficulties posed by outlier camera model detection and identification.
A classifier that combines one-class and multi-class SVMs is used to
distinguish between outlier camera models. The image features use the
covariance matrix to estimate the CFA interpolation coefficients used
to accurately identify the source camera model. Experimental results
based on sixteen different camera models demonstrate the robustness of
the approach.

2. CFA Coefficient Features
A CFA interpolation algorithm, which is an important component of

the imaging pipeline, leaves a unique pattern on a digital image. Such
an algorithm is brand- and often model-specific. Consequently, CFA co-
efficients derived from an image can be used to determine image origin.
An accurate estimation of the CFA coefficients improves classification
accuracy. Our method applies the covariance matrix to reduce the nega-
tive impact of JPEG compression in the linear CFA interpolation model
when the coefficients are estimated.

Practically every CFA interpolation algorithm interpolates missing
RGB pixels in a mosaic image from a small local neighborhood. Thus,
the interpolation operation can be modeled as a weighted linear combi-
nation of neighbor pixels in RGB channels [1, 14, 15]. For example, a
missing G pixel gx,y is interpolated using an n× n neighborhood as:

gx,y =
∑n

i=−n

∑n
j=−n wggx+i,y+j

∣∣∣∣
except

i=0&j=0

+
∑n

i=−n

∑n
j=−n wrrx+i,y+j

+
∑n

i=−n

∑n
j=−n wbbx+i,y+j

where wg, wr and wb are the weighted coefficients in the interpolation.
The linear model can be expressed in vector form as:

p = [ �Wr
�Wg

�Wb] ∗
⎡

⎣
�R
�G
�B

⎤

⎦

where p is the interpolated value and �R, �G and �B refer to the R, G and
B pixel values, respectively, whose center is the interpolated pixel.

For an image with M×N resolution, each interpolation operation can
be described as:

pk =
3n2−1∑

l=1

wlsl,k, k ∈ [1,M ×N ]
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where slk denotes the n × n pixel values of the three channels except
the kth interpolated value, and wl is the corresponding interpolation
coefficient weight.

Equivalently, the vector expression �P = �W ∗ �S can be written as:

�P =

⎡

⎢⎢⎢⎣

p1

p2
...

pM×N

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

w1s1,1 + w2s2,1 + . . . + w3n2−1s3n2−1,1

w2s1,2 + w2s2,2 + . . . + w3n2−1s3n2−1,2
...

w1s1,M×N + w2s2,M×N + . . . + w3n2−1s3n2−1,M×N

⎤

⎥⎥⎥⎦

= �W ∗ �S

JPEG compression is a common post-processing operation used in
image storage that follows CFA interpolation in the imaging pipeline.
An additional JPEG compression to reduce file size is commonly per-
formed when an image is intended to be distributed over the Internet.
A JPEG compression is lossy and alters the pixel values from the CFA
interpolated results. To counter this, we introduce a term in each in-
terpolation to model the perturbation introduced by single and double
JPEG compressions:

�P ′ = �P + �δ =

⎡

⎢⎢⎢⎣

p1

p2
...

pM×N

⎤

⎥⎥⎥⎦ +

⎡

⎢⎢⎢⎣

δ1

δ2
...

δM×N

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

w1s1,1 + w2s2,1 + . . . + w3n2−1s3n2−1,1 + δ1

w2s1,2 + w2s2,2 + . . . + w3n2−1s3n2−1,2 + δ2
...

w1s1,M×N + w2s2,M×N + . . . + w3n2−1s3n2−1,M×N + δM×N

⎤

⎥⎥⎥⎦

This can be written as:

�P ′ = w1
�S1,k + w2

�S2,k + . . . + w3n2−1
�S3n2−1,k + �δ
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where �Sl,k = [sl,1 sl,2 · · · sl,M×N ]′, l ∈ [1, 3n2 − 1] is the vector of
pixel values in the neighborhood of the interpolated location. In this
formulation, we attempt to estimate all the interpolation coefficients wl

using the covariance between �P ′ and �Sl,k:

cov(�P ′, �Sl,k) = cov(w1
�S1,k + w2

�S2,k + . . . + w3n2−1
�S3n2−1,k + δ, �Sl,k)

= w1cov(�S1,k, �Sl,k) + . . . + w3n2−1cov(�S3n2−1,k, �Sl,k)

+cov(�δ, �Sl,k)

The JPEG compression is a non-adaptive method that is independent
of the pixel values. Therefore, the perturbing term �δ is assumed to be in-
dependent of the coefficient vector �Sl,k and, consequently, cov(�δ, �Sl,k) =
0. The covariance reduces the negative impact of the JPEG and double
JPEG compression. When l varies from 1 to 3n2 − 1, we construct the
covariance matrix containing 3n2 − 1 linear equations, and the interpo-
lation coefficients wl are computed as:

⎡
⎢⎢⎢⎣

w1

w2

...
w3n2−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

cov(�S1,k, �S1,k) . . . cov(�S3n2−1,k, �S1,k)

cov(�S1,k, �S2,k) . . . cov(�S3n2−1,k, �S2,k)
...

. . .
...

cov(�S1,k, �S3n2−1,k) . . . cov(�S3n2−1,k, �S3n2−1,k)

⎤
⎥⎥⎥⎥⎦

−1

∗

⎡
⎢⎢⎢⎢⎣

cov(�P ′, �S1,k)

cov(�P ′, �S2,k)
...

cov(�P ′, �S3n2−1,k)

⎤
⎥⎥⎥⎥⎦

(1)

In the interpolation operation, pixels at different interpolated loca-
tions usually have different interpolation coefficients. Therefore, it is
necessary to obtain the interpolation coefficients separately for the dif-
ferent pixel categories. In the case of the commonly used Bayer pattern,
the eight missing color components in a 2×2 Bayer CFA unit are placed
in seven categories. The two missing G components are grouped to-
gether in one category because of their symmetric interpolation pattern.
The remaining six color components are placed in separate categories.

In each category, the interpolation coefficients are assumed to be the
same and are computed using Equation (1). The interpolation neighbor-
hood size is n = 7 in order to collect more information introduced by the
interpolation algorithm while keeping the computation complexity rea-
sonable. Each of the seven categories has (3×72−1) = 146 interpolation
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Figure 1. Combined classification framework.

coefficients. Therefore, the total number of interpolation coefficients is
(3× 72 − 1)× 7 = 1, 022.

2.1 Combined Classification Framework
Several researchers have employed multi-class classifiers for camera

identification [1, 4, 8, 11, 14]. The methodology involves extracting
feature vectors from several image samples created by various camera
models. The multi-class classifier is then trained by inputting feature
vectors from sample images along with their class labels. After training is
complete, the classifier is provided with the feature vector corresponding
to a test image; classification is performed by assigning to the test image,
the class label corresponding to the class that is the best match. The
problem with this approach is that a multi-class classifier cannot identify
outliers that do not belong to any of the classes in the original training
set.

To address this issue we combine a one-class SVM [13] and a multi-
class SVM [2]. The one-class SVM distinguishes outliers that do not
correspond to any of the training camera models. If the one-class SVM
associates a test image with multiple camera models, the multi-class
SVM is used to determine the camera model that is the best match.

Figure 1 presents the combined classification framework. Moc1,Moc2,
· · · ,MocN denote the one-class models and SS1, SS2, · · · , SSN denote
the sets of image samples captured by N cameras. When the feature
vector of a test image is extracted, all of the one-class models are first
used to classify the test image. Each one-class SVM identifies the image
as either being from the camera model it recognizes or an outlier to the
model. Each positive result of a one-class SVM indicates that the test
image may belong to one of the camera models. In general, there are
three possible one-class SVM outputs for a test image:



Wang, Kong & You 113

Table 1. Camera models used in the experiments.

Camera Model ID Number of Images

Canon PowerShot A700 1 35
Canon EOS 30D 2 40
Canon PowerShot G5 3 33
Sony DSC-H5 4 35
Nikon E7900 5 35
Kodak Z740 6 35
Kodak DX7590 7 35
Samsung Pro 185 8 35
Olympus Stylus 800 9 35
Fuji FinePix F30 10 37
Fuji FinePix S9500 11 35
Panasonic DMC-FZ8 12 38
Casio EX-Z750 13 35
Minolta Dimage EX 1500 14 44
Canon PowerShot G6 15 37
Olympus E-10 16 31

1. Outlier: The test image has been created by an unknown cam-
era outside the data set. In this case, the outlier camera can be
exposed by the one-class SVM.

2. One Positive Result: The test image has been created by the
camera model corresponding to the positive result.

3. Multiple Positive Results: The test image has been created by
one of the camera models with a positive result.

For Cases 1 and 2, the final decision about image origin is made as
indicated by the dashed line in Figure 1. For Case 3, the one-class SVM
output is used to select image samples created by the camera models
that give positive results for the test image. A new multi-class model
MMC is then trained using the selected image samples; this model is
used to classify the test image as indicated by the solid line in Figure 1.

3. Experimental Results
Our experiments used a dataset containing images from sixteen differ-

ent cameras over 10 brands (Table 1). The images were captured under a
variety of uncontrolled conditions, including different image sizes, light-
ing conditions and compression quality. Each image was divided into
512 × 512 non-overlapping blocks of which eight were randomly chosen
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Table 2. Confusion matrix for all sixteen cameras.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Outlier 
1 97.5 * * * * * * * * * * * * * * 
2 1.3 91.9 * * * * 1.3 * 2.5 * * * * * * 
3 1.9 * 92.3 * * * * * * * * * * * * 
4 * * * 91.7 * * * * * * 1.6 * * * * 
5 * * * * 90.0 * * 1.6 * * * * 2.5 * * 
6 * 1.6 * * * 90.0 2.5 * * * * * * * * 
7 * 1.6 * * * 2.5 90.8 * * 1.6 * * * * * 
8 * * * * 1.6 * * 93.3 * * * * * * * 
9 * 1.6 * 3.3 * * * * 85.0 2.5 * 3.3 * * * 
10 * * * * * * * * 1.5 94.1 2.2 * * * * 
11 * * * * 1.6 * * * * 3.3 90.8 * * * * 
12 * * * 1.4 * * * * 1.4 * * 93.8 * * * 
13 1.6 * * * 1.6 * * * * * * * 91.7 * * 
14 * * * * * * * * * * * * * 97.9 * 
15 10.8 * 11.5 * 1.4 * * * * * 3.7 * * * 72.0 
16 * 2.0 * * * * 5.7 * 20.2 * * * 1.2 * 69.8 

 

for analysis. The image database consisted of 4,600 different images with
512 × 512 resolution. For each of the first fourteen camera models (IDs
1–14), 160 randomly chosen images were used for classifier training; the
remainder were used for testing purposes. The remaining two cameras
(IDs 15 and 16) provided 544 images that were used as outlier test cases.

One-class SVM and multi-class SVM implementations provided by
LIBSVM [3] were used to construct the classifier. The RBF kernel was
used in both SVMs. The kernel parameters were determined by a grid
search as suggested in [6].

The experimental results are shown in Table 2 in the form of a con-
fusion matrix. The fifteen columns correspond to the fourteen one-class
training models and the outlier class. The sixteen rows correspond to
the sixteen cameras used in the study. The (i, jth) element in the con-
fusion matrix gives the percentage of images from camera model i that
are classified as belonging to camera model j. The diagonal elements
indicate the classification accuracy while elements (15, 15) and (16, 15)
indicate the classification performance for the outlier camera models.
Values that are less than 1% are denoted by the symbol “*” in the table.
The average classification accuracy is 92.2% for the fourteen cameras
and 70.9% for the two outlier camera models.
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Figure 2. Average accuracy under different JPEG quality factors.

In order to test the classification method on double-compressed JPEG
images, the images were re-compressed with secondary quality factors
(QF) of {65, 75, 85, 95} without any other manipulations such as scaling
and color reduction. Figure 2 presents the performance of the method
for various quality factors for the double JPEG compression. The solid
line shows the average detection accuracy for the fourteen camera models
and the dashed line shows the average detection accuracy for the two
outliers. For the quality factor of 95, the classification method provides
an average accuracy of 82.5% for the fourteen camera models and 64.6%
for the two outliers. For the quality factor of 65, the average accuracy
drops to 55.7% for the fourteen cameras and 46.9% for the two outlier
cameras.

Table 3 compares the results for the proposed method with those
reported for the method of Meng, Kong and You [11]. The Meng-
Kong-You method supposedly outperforms other source camera iden-
tification methods [11]. However, the results in Table 3 indicate that
the Meng-Kong-You method cannot handle double-compressed JPEG
images and is incapable of detecting outliers. On the other hand, the



116 ADVANCES IN DIGITAL FORENSICS V

Table 3. Average accuracy (double JPEG compression) for different quality factors.

Meng-Kong-You Method Our Method
QF None 95 85 75 65 None 95 85 75 65

1 91.5 61.7 58.7 49.9 50.1 97.5 94.2 91.7 73.3 63.3
2 87.9 61.3 57.2 52.3 47.2 91.9 87.5 81.9 67.5 51.9
3 89.7 60.4 59.5 52.3 50.9 92.3 79.8 74.0 63.5 57.7
4 89.1 64.0 57.8 51.0 49.0 91.7 84.2 78.3 62.5 51.7
5 91.2 62.5 58.8 50.5 47.6 90.0 78.3 73.3 59.2 48.3
6 90.5 65.0 57.4 52.5 49.9 90.0 77.5 75.8 63.3 55.8
7 89.0 62.6 56.8 52.1 48.8 90.8 79.2 75.8 60.0 54.2
8 86.8 62.4 56.2 51.2 48.1 93.3 85.8 79.2 66.7 45.8
9 90.8 64.5 56.3 52.1 49.9 85.0 73.3 69.2 57.5 49.2
10 88.9 62.9 58.7 51.3 49.3 94.1 87.5 81.6 76.5 59.6
11 89.8 61.3 56.8 49.7 50.6 90.8 78.3 75.8 70.0 55.0
12 90.7 63.7 58.0 49.4 51.7 93.8 83.3 79.2 68.1 61.1
13 91.3 64.5 56.1 49.7 48.7 91.7 75.0 71.7 62.5 58.3
14 90.4 60.4 58.8 50.7 51.1 97.9 91.1 88.0 71.9 67.2

Av. 89.8 62.7 57.7 51.0 49.5 92.2 82.5 78.3 65.9 55.7
15 - - - - - 72.0 65.5 60.5 50.3 47.0
16 - - - - - 69.8 63.7 54.0 49.6 46.8

Av. - - - - - 70.9 64.6 57.3 50.0 46.9

proposed method is robust against double JPEG compression and can
detect training model outliers with reasonable accuracy.

4. Conclusions
This paper has described a new method for determining the source

camera for digital images. A covariance matrix is used to obtain a feature
vector of 1,022 CFA interpolation coefficients. The feature vector is input
to a classifier that is a combination of one-class and multi-class SVMs.
The classifier can identify camera models in the training set as well as
outliers. Experiments indicate that average accuracies of 92.2% and
70.9% are obtained for camera model identification and outlier camera
model identification, respectively. The experiments also demonstrate
that the method exhibits good robustness for double-compressed JPEG
images.
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